

A forum for the exchange of circuits, systems, and software for real-world signal processing MIXED-SIGNAL CHIPSET TARGETS HYBRID-FIBER COAXIAL CABLE MODEMS (page 3)

Powerful Design Tools for Motion Control Applications (page 6)
Ask The Applications Engineer-Switches \& Multiplexers (page 20)
Complete contents on page 3

Editor's Notes

ADI WEB SITE: http://www.analog.com
We first announced this Web Home Page almost exactly two years ago (Volume 29, No. 3, 1995). At that time, we bravely stated: "This site is intended to help engineers throughout the design-in process. There are articles and white papers discussing the underlying technologies, search tools to help
 you find the ideal component for your application, and we are developing a full set of material, including data sheets on every current part-and even SPICE models and evaluation-board layouts for many of them."
D uring the past two years, many of you have visited our Web site as it has developed. Some (hopefully, many) have been gratified, others (hopefully, few) have been disappointed. You've expressed your likes and dislikes quite volubly-and we' vebeen listening. Other than personal contact with our sales and applications engineers, theWorldwideWeb, through our site and our links with other sites, has become one of the most important ways of providing you with information-and hearing your feedback-truly another form of "A nalog Dialogue".
We are in the midst of an immense work-in-progress to improve the user-friendliness, helpfulness, and intuitive nature of using the Web site throughout your design process-not just for product selection, but for support and procurement. Our objectives are: (1) continually earning your loyalty as a customer, (2) attracting more of your colleagues in the industry, and (3) achieving an interesting site with consistent, rapid, and complete content posting-one that you will want to visit frequently.
A few specific things we are seeking to improve are (1) speeding your ability to search thesite and to useour search engines for comparative product selection; (2) increasing your ability to more easily become informed about "what's new" to the depth you need; (3) making easily available the information you need for making replacements, whether it be of competitive products you've been considering, or substitutions for obsoleteADI products; (4) speeding up the means of getting literature and samples to you; (5) making it easier for you to acquire catalog information; (6) increasing the ways to better interact with you in terms of improving feedback channels, answering applications questions, and making the features of our site that you regularly visit more readily accessible to you personally.
"Rome wasn't built in a day," but we think you will see visible signs of progress as the days go by in 1998. As always, your feedback is not only welcome-it's an essential part of the site's design. \square Dan.Sheingold@analog.com

IN THE LAST ISSUE

Volume 31, Number 2, 1997, 24 Pages, (For a copy, circle 33) Editor's Notes, Authors
Li -I on battery charging requires accurate voltage sensing
Pin-compatible 14-bit monolithic AD Cs: First to sample from 1-10 M SPS (AD 924x)
$200-\mathrm{M} \mathrm{Hz} 16 \times 16$ video crosspoint switch IC (AD 8116)
Selecting mixed-signal components for digital communications systems (IV)
Quad-SH ARC DSP in CQFP - a 480-M FLOPS powerhouse (AD 14060)
Digital signal processing 101—an introductory course in DSP system design-II
N ew-Product Briefs:
ADC s and DACs, R-DAC, Audio Playback
Amplifiers, M ux, Reference, DC-DC
Power M anagement, Supervisory Circuits
Temp Sensor, Codec, Communications and ATE ICs
Ask T he A pplications Engineer-25: $0 p$ amps driving capacitive loads
Worth Reading, M ore authors
Potpourri

THE AUTHORS

Curt Ventola (page 3) is a M arketing M anager in ADI's Advanced Linear Products group, responsible for wiredcommunications line drivers, variable-gain amplifiers, and video encoders. He holds a BS in M aterial Engineering from Rutgers University and an M BA from Babson College. In his spare time, he enjoys
 racquetball, ice hockey, and coaching his sons' various sports teams.
Finbarr Moynihan (page 6) is a Systems Engineer with the M otion Control group, designing motorcontrol algorithms and specifying new single-chip solutions for motor control. He holds BE, M .Eng.Sc. (in EE) and Ph.D. degrees from U niversity C ollege, C ork, Ireland. H is doctoral thesis was on applying DSP to motor control. He has
 authored papers and presented seminars on motion control theory and practice, and lectured in motion control at U niversity C ollege, Cork, and the University of Padova, Italy.
Paul Kettle (page 6) is a Senior Systems Engineer in the M otion Control group. H is responsibilities include product definition and design-in opportunities in the Pacific rim countries, and software tool development strategy for the motion control group. He holds a Ph.D. in Stochastic Control and a B.Eng. in electronic engineering from Dublin City U niversity. He has published widely on motion-control topics. Paul's main passion in life is sailing, and the sea in general.
Tom Howe (page 6) is a Software Systems Engineer in the M otion Control group. He develops kernels, libraries, and software tools for motor-control DSPs.Tom has a BSEE from the U niversity of N ew H ampshire and an MS in Computer Engineering from U. M ass., L owell. In his spare time, Tom is renovating his house; he also enjoys reading, biking, and travel.
 -
[M ore authors on page 23]
Cover: The cover illustration was designed and executed by Shelley Miles, of Design Encounters, H ingham MA.

Analog Dialogue

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Published by Analog Devices, Inc. and available at no charge to engineers and scientists who use or think about I.C. or discrete analog, conversion, data handling and DSP circuits and systems. C orrespondence is welcome and should be addressed to Editor, A nalog Dialogue, at the above address. A nalog Devices, Inc., has representatives, sales offices, and distributors throughout the world. Our web site is http://www.analog.com/'. For information regarding our products and their applications, you are invited to use the enclosed reply card, write to the above address, or phone 781-937-1428, 1-800-262-5643 (U.S.A. only) or fax 781-821-4273.

Innovative MixedSignal Chipset Targets Hybrid-Fiber Coaxial Cable Modems

Jim Surber and Curt Ventola

The world is on the brink of a new era of widespread access to the information super highway, and cable modems are poised to provide the high-speed "on-ramp". C able modems enable a CAT V system with bidirectional hybrid-fiber coax (HFC) capability to serve as a two-way high-speed data port, which can be utilized to provide telephony and Internet access service to the home.T hough a relatively small percentage of the US population is presently connected to the Internet, clearly its reputation as a valuable advertising and information resource is quickly spreading; the Internet is well on its way to becoming the backbone of the Information Age.
H owever, a roadblock to widespread adoption of the Internet is its painfully slow access time to PC s via the telephone modem. The slow response, and consequent user frustration, has slowed market growth and prevented the Internet from becoming an indispensable information tool for the average home consumer. The cable network industry has seen this as an opportunity to generate additional revenue by utilizing their vast cable plant resources, and 1-G H z network bandwidth, to provide higher-speed interactive data services to homes, institutions, and businesses. The major cable industry multi-system operators (MSOs) have announced their intentions to have cable modem service fully deployed by 1998.
As originally designed, the typical CATV cable plant was intended for one-way delivery of high-quality television signals to the home. The prospect of offering cable modems and other interactive video services has required the system owners to upgrade their plants by providing bidirectional signal capability. T his has entailed the installation of a bidirectional hybrid-fiber coax trunk and 2-way line amplifiers. It is estimated that approximately 20% of the existing CATV plants have already been upgraded to full bidirectional capability. This would mean that some 20 million US homes and businesses could take advantage of bidirectional cable service.

What are the winning advantages of Internet access via cable modems and the CATV network over the prevailing telephone modem connection? First, the cable modem operates in a burst mode; this means that, while it remains physically connected to the cable plant, it only uses network resources when it transmits a burst of data. T his allows the cable modem to be effectively always "signed on" to the Internet and ready for instant two-way data transfer. To accomplish this with a telephone modem would require a dedicated phone line-which leads to the next key advantage of cable modems: the cable modem does not tie up a phone line while the user is "surfing the 'net". With telephone modem access, unless there is a dedicated phone line, normal telephone service is suspended during Internet sessions.

Another advantage of cable modems is the dramatically increased speed of data delivery. Cable modems are capable of up to $36 \mathrm{M} \mathrm{b} / \mathrm{s}$ downstream data rates and $10 \mathrm{Mb} / \mathrm{s}$ upstream, compared to the standard telephone modem service of $28 \mathrm{~kb} / \mathrm{s} \mathrm{up}$ and downstream ($56 \mathrm{~kb} / \mathrm{s}$ max). This many-fold increase in data-transmission speed means that the Internet access speed will be generally limited by URL file servers rather than the modem baud rate. This is especially important when the user is downloading large graphic, video, or image files. A file that takes 8 minutes to download via a $28.8-\mathrm{kb} / \mathrm{s}$ telephone modem takes 8 seconds via cable modem. This increased access speed will unleash the true power of the Internet's imaging potential.

Figure 1. Block diagram of HFC CATV plant.
The cable industry would prefer that cable modems for Internet surfing become "off-the-shelf" items, purchased and maintained by the consumer, very much like telephone modems. To this end, cable modems would need to be interoperable, which means that a given cable modem will work in different cable systems, with different-vendors' head-end equipment. To achieve interoperability of cable modems, universal standards are required-and indeed, they are emerging. The M ultimedia Cable N etwork Systems (M CNS) group has issued their "D ata over cable services interface specifications" for interactive communications via the HFC network. The M C N S standards have been endorsed by many of the larger cable M SO s as their working standard. T heIEEE 802.14 committee is also developing a set of standards for HFC cable networks, and the DAVIC and DVB standards have been released and are being deployed in Europe. For cable telephony, however, proprietary algorithms are employed for upstream/downstream transmissions, and interoperability is not a concern.
The basic cable modem consists of an RF receiver and transmitter physical layer, the PH Y, that modulates/demodulates the data, and

IN THIS ISSUE

Volume 31, Number 3, 1997, 24 Pages
Editor's N otes, Authors, 2
In the L ast Issue 2
Innovative mixed-signal chipset targets hybrid-fiber coaxial cable modems 3
Poweful design tools for motion-control applications 6
Selecting mixed-signal components for digital communications systems (V) 8
DSP 101, Part 3: Implement algorithms on a hardware platform 12
N ew-Product Briefs:
Amplifiers, D/A C onverters, References 16
Analog-to-D igital Converters 17
Digital Communications and Supervisory 18
Signal Processing, Regulation, and Control 19
Ask The Applications Engineer-26: Switches and multiplexers 20
M ore Authors, Patents 23
a media access controller, the MAC, that performs the master system control function. When the standards are fully deployed, the downstream data delivery will take place in the $42-850 \mathrm{M} \mathrm{Hz}$ band with existing $6-\mathrm{MHzCATV}$ network channel spacing. T he downstream digital modulation format will be 64-QAM (quadrature amplitude modulation), with a future migration to $256-$ QAM. The HFC data delivery system will be asymmetric; the data rate will be faster downstream than upstream. This is generally compatible with Internet surfing applications, since typical http navigation calls for much more data to be sent down to the computer than up to the network.
The upstream transmit path, required when using cable modems, is the major new requirement that has been placed on the CATV plant. The bandwidth that has been allocated for the return-path function by the cable industries is $5-42 \mathrm{MHz}$ in the $U S A$, and $5-65 \mathrm{M} \mathrm{Hz}$ in Europe. This particular bandwidth is expected to contain substantial amounts of impulse noise, or "ingress", which will make reverse path communication difficult. Initially, a relatively simple modulation format, quadrature phase-shift keying (QPSK), is being utilized by most cable modem vendors. In the future, as the cable plant environment is further upgraded and improved, there will be a movement to a 16-QAM upstream modulation format to increase the bits/Hz efficiency of the upstream data transmission.
Some of the technologically and market-driven requirements for the upstream transmitter ($\mathrm{T} x$) section of a cable modem are:

- Output frequency agility with digital control
- Full digital control of modulation and output power parameters
- High spurious-free dynamic range (SF DR) on the modulated output carrier
- Integrated digital signal processing with a high level of functionality
- Low cost
- Low power

A nalog D evices is in a unique position to supply an optimum silicon solution for the upstream $T \times$ requirement; it falls squarely in the domain of ADI's mixed-signal and linear core competencies. T he AD 9853/AD 8320 upstream-T x chipset*, available now, integrates the high-speed digital and analog blocks that provide a complete ASIC solution for the HFC upstream transmitter requirement. The AD 9853 is a modulator function that has been specifically defined to meet the requirements of both interoperable and proprietary implementations of the HFC upstream function. The

AD8320 is a companion cable driver amplifier, with a digitally programmable gain function; matched to the output of theAD 9853 modulator, it directly drives the cable plant with the modulated carrier. Together, the AD 9853 and AD 8320 fully meet the HFC return-path requirement.
The AD 9853 CM OS digital modulator combines high-speed conversion, direct digital synthesis, and digital signal processing technologies. The modulator architecture is digital throughout, which provides definite advantages in I/Q channel phase- and amplitude matching, and long-term modulator stability. The AD 9853 is programmed and controlled via a serial control bus that is $I^{2} \mathrm{C}$ compatible. T he basic modulator block consists of an input channel encoder which formats the input data stream into the desired bit-mapped constellation and modulation format. The data stream is demultiplexed into I/Q channel data paths that are individually FIR-filtered to provide the desired pulse response characteristic for controlled output burst ramping. Then interpolating filter stages are used to match the effective output data rate of the FIR filters to the output sampling frequency of the direct digital synthesizer (DDS) for frequency upconversion.
TheA D 9853 employs a state-of-the-art D DS function to generate precise sine and cosine digital waveforms to mix with the pulseshaped data bitstream in a high-speed mixer stage, and create the $5-42 \mathrm{M} \mathrm{Hz}$ modulated carrier. The DDS is also responsible for making the device highly frequency-agile; its 32-bit tuning word capability enables the modulated carrier at the output to be tuned with a resolution of 0.029 Hz .
A high-speed adder stage sums the upconverted digital I and Q data to create a single data path, which is ready to be converted into the analog domain by a high-speed 10-bit D/A converter. A SINC filter is utilized to "precompensate" the data stream for the sinx/x roll-off of a high-speed D/A converter's quantized output function. The patented architecture of the AD 9853 's CM OS D/A converter stage, with a $55-\mathrm{dB}$ SFDR at 40 M HzAout , rivals the performance afforded by expensive and power-hungry bipolar DACs.
A key system cost-saving feature in the AD 9853 is its $\times 6$ referenceclock multiplier circuitry, which essentially allows the AD 9853 to generate the high-speed clock for the DDS synthesizer internally, saving the user the expense and system design difficulty of

[^0]

Figure 2. AD9853 digital modulator block diagram.
implementing an external $122-\mathrm{M} \mathrm{Hz}$ reference clock ($160-\mathrm{M} \mathrm{Hz}$ clock for $65-\mathrm{M} \mathrm{Hz}$ carrier applications). The SF DR specification is achieved with the low-jitter clock multiplier circuitry enabled.

Additional programmablefunctions that support the requirements of HFC 2-way communication applications include forward error correction, data scrambling, and preamble word insertion. T hese arefunctions specified for successful burst packet data transmission in interoperable implementations of cable modems. TheAD 9853 also includes an output serial-data control function for interfacing directly to theAD 8320 cable-driver amplifier. T his control function allows the AD 9853 to enable the AD8320 automatically at the appropriate time in a burst transmission sequence and allows the cable modem's M AC function to control the output power of the modem via the AD 9853's control bus.
The AD 9853 modulator output is connected to the input of the AD 8320 programmable cable driver amplifier through an external low-pass filter, which is necessary to suppress the aliased images that are generated by the DAC's sampled output. T he first aliased image occurs at $F_{\text {sampling }}-F_{\text {out, }}$ which necessitates a fairly sharp-cutoff low-pass filter function. An inexpensive 7-pole elliptical low-pass passive 75 -ohm LC filter can beimplemented between theAD 9853 and AD8320 to suppress the output aliases sufficiently for the HFC network application.

Figure 3. Block diagram of AD8320 digitally programmable cable-driver amplifier.
The AD 8320 is a digitally-programmable cable driver amplifier (using a bipolar IC process) that directly interfaces to the $75-\Omega$ cable plant. It provides 36 dB of programmable gain range with a maximum power output level $>18 \mathrm{dBm}(6.2 \mathrm{~V})$ into a $75-\Omega$ load. The gain of theAD 8320 is controlled via an 8-bit SPI serial control word. T heAD 8320 accomplishes programmable gain control with a bank of 8 binary weighted transconductance $\left(g_{m}\right)$ stages, which are connected in parallel to their respective load resistors. The total attentuation of the core is determined by the combination of g_{m} stages selected by the data latch. T he eight g_{m} stages, with their 256 levels of attenuation, provide a linear gain function with a dynamic range of 36 dB ($\cong 64 \mathrm{~V} / \mathrm{V}$ full scale).
The AD 8320's harmonic distortion is typically -57.2 dB for a $42-\mathrm{M} \mathrm{Hz}$ output and -54 dB for $65-\mathrm{M} \mathrm{Hz}$ output, at an output power level of 12 dBm into 75Ω. This dynamic performance supports the requirements of cable telephony and data services over the H F C network. T heA D 8320's output stage has a dynamic output impedance of 75Ω. This allows for direct single-ended connection of the device output to the CATV plant without backtermination, retaining the 6 dBm of load power that would be lost using the $75-\Omega$ back-termination resistor required by the traditional low-output-Z driver amplifier. In fact, the AD8320 maintains
$75-\Omega$ impedance at its output during device power down to minimize glitches during transitions. This helps minimize line reflections and insures proper filter operation for any forward mode device sharing the cable connection. Another advantage of the dynamic $75-\Omega$ output impedance is that it saves cost significantly by eliminating an expensive G aAs switch, which would otherwise be required to minimize transitional glitches.

Figure 4. AD9853 and AD8320 in upstream Tx application.
The AD 9853/AD 8320 chipset combination offers the highest dynamic performance available from an integrated chipset for the H FC upstream Tx function. As Figure 5a shows, the chipset will typically deliver a signal to the cable plant's diplexer filter with $>50 \mathrm{~dB}$ spur rejection for a $42-\mathrm{M} \mathrm{Hz} 16-\mathrm{QAM}$-modulated carrier. Figures 5 b \& c show a typical eye diagram and constellation for a 16-QAM modulated carrier; the chipset delivers error-voltage magnitude (EVM) performance of $<2 \%$. I/Q phase imbalance is typically less than 1°, due to the all-digital modulator scheme. Evaluation is facilitated by available board, the AD 9853-45PCB, which includes AD 9853, AD 8320, and a 45-M H z LP filter.

Figure 5. AD9853/ AD8320 chipset performance with $42-\mathrm{MHz}$ carrier 16-QAM-modulated @ $320 \mathrm{ksym} / \mathrm{s}$.
To summarize, the upstream transmitting chipset, with its high level of functional integration and state-of-the-art mixed-signal technology, today offers an effective silicon solution for the twoway H FC network, to help usher in the next wave of information resources for the home consumer. D evelopments to look forward to include compact downstream tuners and demodulators, and-ultimately-a single-chip complete cable modem solution.

Powerful Design Tools for Motion Control Applications

Finbarr Moynihan, Paul Kettle, Aengus Murray, and Tom Howe

Introduction

The need for sophisticated solutions for motor control continues to increase in the consumer, appliance, industrial and automotive markets. A wide variety of motor types are in use, depending on the application; the most common include the ac induction motor, permanent-magnet synchronous motor, brushless dc motor and such newer designs as the switched-reluctance motor. Indeed, many applications, which were formerly dominated by constant speed, mains-fed induction motors, now require the sophistication of variable speed control. In some applications, such as compressors, fans and pumps, this need for increased sophistication is driven by legislation and consumer demand for higher operating efficiencies. Elsewhere, high-performance applications in process control, robotics and machine tools demand variable speed and increased precision, achievable only by the use of sophisticated control algorithms.
The key to the real-time implementation of sophisticated control algorithms for these motion control systems has been the advent of powerful digital signal processors (DSPs).* Even in less-demanding-but cost-sensitive-applications, such as domestic refrigerator compressor drives, the power of the DSP can be harnessed to implement sensorless control algorithms that reduce the system cost and increase the overall robustness of the drive. In high-performance servo drives, the powerful computational ability of the DSP permits more precise control through vector control, ripple torque reduction, predictive control structures, and compensation for non-ideal system behavior.
Besides the powerful DSP core, all motor control systems require a significant array of additional circuits for correct operation, including such functions as:

- Analog-to-digital conversion for current or voltage feedback
- Pulsewidth modulation (PWM) blocks for generation of the inverter switching commands
- Position-sensor interfaces for higher-performance applications
- Serial ports for host communications
- General purpose digital input/output ports.

A nalog D evices now offers a range of single chip DSP-based motor control solutions that integrate these peripheral functions with a high performanceDSP core and the required memory.T wo devices are described here: the AD M C 330†, designed for low-to-medium performance dynamic requirements, and the AD M C 300†, which extends the single-chip capability to control of high-performance servo drives.
ADMC 330 Single Chip DSP-Based Motor Controller (see Figure 1): The ADM C330 integrates a 20 MIPS DSP core, 2 K word program memory RAM , 2 K word program memory ROM, 1 K word data memory RAM, 2 serial ports and a variety of motorcontrol peripherals onto a single chip. The D SP core is similar to that used in the 16 -bit fixed-point ADSP-2171. T he motor control peripherals include 7 analog inputs with a comparator based ADC subsystem that permits 4 conversions per PWM period. In addition, a sophisticated 3-phase, 12-bit, PWM system enables all necessary inverter switching signals to be generated, timed to within 100 ns , with minimal processor overhead. D ead-time of these PWM signals may be adjusted in the processor so that no external logic is required. The PWM unit includes special modes for brushless dc motors or electronically commutated motors, where only two of the three motor phases conduct at the same time. In addition, the AD M C 330 includes 8 digital I/O lines, a watchdog timer, a general purpose 16 -bit timer and two auxiliary PWM outputs.

ADMC 300 Single Chip DSP-B ased Servo Motor Controller

 (Figure 2): High-performance servo drives, for robotics and machine tools, require high resolution ADC s and a position sensor interface to meet the demanding performance requirements. The AD M C 300 addresses these needs in a single-chip DSP-based solution for these applications. The AD M C 300's additional functionality for more-demanding applications includes a DSP core enhanced for 25-M IPS performance. In addition, the program memory RAM has been doubled to 4 K words. The need for multichannel, high-resolution ADCs is met by including five independent sigma-delta AD C s that provide 12 bits of resolution. Analog signal expansion is made possible by the provision of three external multiplexer control lines. In addition, the ADM C 300 facilitates position sensing via an encoder interface that allows easy connection to an incremental encoder.DevelopmentTools: Since software is the key to the use of digital equipment, powerful processing capability requires an equally powerful development system in order to use these sophisticated motor controllers in real applications. Both processors come with
*See "M otion C ontrol Chip Sets" in A nalog Dialogue 30-2 (1996), pp. 3-5. \dagger For technical data, consult our Web site, www.analog.com, use Faxback to request $\mathbf{2 1 2 6}$ and $\mathbf{2 2 5 3}$ (see page 24), or use the reply card: circle $\mathbf{2}$

Figure 1. The ADMC330 single-chip DSP-based motor controller.

Figure 2. The ADMC300 Single-Chip DSP-based Servo Motor Controller.
a full range of hardware and software development tools that allow rapid prototype development and real system evaluation. In both the AD M C 300 and the AD M C 330, the program-memory ROM block is preprogrammed with a monitor/debugger function that enables access to the internal registers and memory of the processors. In order to speed program development, the ROM code also contains a library of useful mathematical and motorcontrol utilities that may be called from the user code.
A separate evaluation board for code development is available for each type. T hese evaluation boards contain easy interfaces to the many peripheral functions of the processors, so that the board can be easily integrated into a final target development system. Each evaluation board contains a UART interface that may be used to connect the DSP controller to aW indows-based M otion C ontrol Debugger program. The debugger program allows the developer to download code to the DSP and monitor or modify the contents of program memory, data memory, DSP registers, and the peripheral registers. In addition, a selection of debugging toolsincluding breakpoints, single-step, and continuous-run operationmay be selected from theW indows menu. T he sample screen from the ADMC330 debugger shown in Figure 3 illustrates many of the features of the debugger. Additional software tools-such as the assembler, linker, and PROM programmer-are also included. For stand-alone operation, the evaluation boards may also use external memory for boot program loading.

Figure 3. Sample Output Screen of Motion Control Debugger for ADMC330.
AD vanced Powl Rtrain ${ }^{\text {Tm }}$: In order to develop real motor-control solutions, the computing power of the DSP must be combined with a suitable power-electronic converter that produces the required voltages to drive the motor in response to the control commands (and can furnish the necessary currents). The ADvanced Powl Rtrain board represents a new departure in development systems for real world motor control systems. The board integrates Analog D evices's high-performance DSP-based motor controllers with an appropriate International Rectifier
[www.if.com] PowIR train ${ }^{\text {m }} *$ integrated power module; it provides all of the necessary circuitry to permit development of motor control algorithms for a variety of applications. Using plug-in interchangeable processor modules, the user can choose the level of control appropriate for the application.
With the AD M C 330 processor module, the board may be used to develop sensorless control algorithms for brushless dc motors for applications such as compressors and washing machines. In addition, simple vector-control strategies for an ac induction motor may be programmed for pump or fan applications. If higher performance levels are required, the AD M C 300 processor module may be mounted instead, to implement open-loop and closedloop vector control of induction motors, for applications such as general-purpose variable speed drives, paper and textile machines, and conveyors. With the ADM C 300 processor module, the $A D$ vanced PowI R train is suitable for developing high-performance servo controllers using an induction motor, a brushless dc motor, or a permanent-magnet synchronous motor.
TheAD vanced PowI R train board integrates the following features:

- An integrated power module from International Rectifier. The AD vanced Powl R train board includes a power module that is capable of driving a 1 -hp, three-phase motor. The module integrates a three-phase diode bridge that may be used to rectify a $50 / 60 \mathrm{~Hz}$ three-phase supply.T he power module also includes a three-phase IGBT-based inverter that may be connected directly to a three- phase motor.
- Interchangeable processor modules so that the appropriate DSPbased motor controller may be used for your application.
- A UART interface to theW indows-based program development environment, the M otion C ontrol Debugger
- All required gatedrive circuitry. T he board takes the PWM signals generated by the processor module and feeds them directly to an International Rectifier IR2132 gate drive circuit that provides the appropriate drive signals for the three low-side and the threehigh side switches in the inverter.
- Protection circuits. TheAD vanced PowIR train provides automatic shutdown of the power stage in the event of an overvoltage, overcurrent, overtemperature, or earth fault condition. T he fault signal, passed to the DSP-based controller, may also be used in a suitable interrupt service routine.
- Sensor circuits. The AD vanced PowIRtrain board includes all necessary voltage and current sensing to implement a wide variety of control structures.

[^1]
Selecting Mixed-Signal Components for Digital Communications Systems- Part V

Aliases, images, and spurs
by Dave Robertson
Part I (A nalog D ialogue 30-3) provided an introduction to the concept of channel capacity, and its dependence on bandwidth and SN R ; part II (30-4) briefly summarized different types of modulation schemes; part III (31-1) discussed different approaches to sharing the communications channel, including some of the problems associated with signal strength variability. Part IV (31-2) examined some of the architectural trade-offs used in digital communications receivers, including the problems with frequency translation and the factors contributing to dynamic range requirements. This final installment considers issues relating to the interface between continuous-time and sampled data, and discusses sources of spurious signals, particularly in the transmit path.

Digital communications systems must usually meet specifications and constraints in both the time domain (e.g., settling time) and the frequency domain (e.g., signal-to-noise ratio). As an added complication, designers of systems that operate across the boundary of continuous time and discrete time (sampled) signals must contend with aliasing and imaging problems. Virtually all digital communications systems fall into this class, and sampled-data constraints can have a significant impact on system performance. In most digital communications systems, the continuous-time-to-discrete-time interface occurs in the digital-to-analog (DAC) and analog-to-digital (ADC) conversion process, which is the interface between the digital and analog domains. T he nature of this interface requires clear understanding, since the level-sensitive artifacts associated with conversion between digital and analog domains (e.g., quantization) are often confused with the time-sensitive problems of conversion between discrete time and continuoustime (e.g., aliasing). The two phenomena are different, and the subtle distinctions can be important in designing and debugging systems. (N ote: all digital signals must inherently be discrete-time, but analog signal processing, though generally continuous-time, may also be in discrete time-for example, with switched-capacitor circuits.)
The N yquist theorem expresses the fundamental limitation in trying to represent a continuous-time signal with discrete samples. Basically, data with a sample rate of F_{s} samples per second can effectively represent a signal of bandwidth up to $F_{f} 2 \mathrm{~Hz}$. Sampling signals with greater bandwidth produces aliasing: signal content at frequencies greater than $F_{f} 2$ is folded, or aliased, back into the $F_{g} / 2$ band. This can create serious problems: once the data has been sampled, there is no way to determine which signal components are from the desired band and which are aliased.
M ost digital communications systems deal with band-limited signals, either because of fundamental channel bandwidths (as in an ADSL twisted-pair modem) or regulatory constraints (as with radio broadcasting and cellular telephony). In many cases, the
signal bandwidth is very carefully defined as part of the standard for the application; for example, the GSM standard for cellular telephony defines a signal bandwidth of about 200 kHz , IS-95 cellular telephony uses a bandwidth of 1.25 M Hz , and a DM TADSL twisted-pair modem utilizes a bandwidth of 1.1 M Hz . In each case, the Nyquist criterion can be used to establish the minimum acceptable data rate to unambiguously represent these signals: $400 \mathrm{kHz}, 2.5 \mathrm{M} \mathrm{Hz}$, and 2.2 M Hz , respectively. Filtering must be used carefully to eliminate signal content outside of this desired bandwidth. T he analog filter preceding an ADC is usually referred to as an anti-alias filter, since its function is to attenuate signals beyond the N yquist bandwidth prior to the sampling action of the A / D converter. An equivalent filtering function follows a D/A converter, often referred to as a smoothing filter, or reconstruction filter. T his continuous-time analog filter attenuates the unwanted frequency images that occur at the output of the D/A converter.
At first glance, the requirements of an anti-alias filter are fairly straightforward: the passband must of course accurately pass the desired input signals. T he stopband must attenuate any interferer outside the passband sufficiently that its residue (remnant after the filter) will not hurt the system performance when aliased into the passband after sampling by the A/D converter. Actual design of anti-alias filters can be very challenging. If out-of-band interferers are both very strong and very near the pass frequency of the desired signal, the requirements for filter stopband and narrowness of the transition band can be quite severe. Severefilter requirements call for high-order filters using topologies that feature aggressive filter roll-off. U nfortunately, topologies of filters having such characteristics (e.g., Chebychev) typically place costly requirements on component match and tend to introduce phase distortion at the edge of the passband, jeopardizing signal recovery.
D esigners must also be aware of distortion requirements for antialias filters: in general, the pass-band distortion of the analog antialias filters should be at least as good as the A/D converter (since any out-of-band harmonics introduced will be aliased). Even if strong interferers are not present, noise must be considered in antialias filter design. Out-of-band noise is aliased back into the baseband, just like out-of-band interferers. For example, if the filter preceding the converter has a bandwidth of twice the N yquist band, signal-to-noise (SNR) will be degraded by 3 dB (assuming white noise), while a bandwidth of $4 \times \mathrm{N}$ yquist would introduce a degradation of 6 dB . Of course, if SN R is more than adequate, wide-band noise may not be a dominant constraint.
Aliasing has a frequency translation aspect, which can be exploited to advantage through the technique of undersampling. To understand undersampling, one must consider the definition of the N yquist constraint carefully. N ote that sampling a signal of bandwidth, $F_{s} / 2$, requires a minimum sample rate $\geq F_{s}$. This $F_{s} / 2$ bandwidth can theoretically be located anywhere in the frequency spectrum [e.g., $N F_{s}$ to $(N+1 / 2) F_{s}$], not simply from dc to $F_{s} / 2$. The aliasing action, like a mixer, can be used to translate an RF or IF frequency down to the baseband. Essentially, signals in the bands $N F_{s}<$ signal $<(N+1 / 2) F_{s}$ will be translated down intact, signals in the bands $(\mathrm{N}-1 / 2) \mathrm{F}_{\mathrm{s}}<$ signal $<N \mathrm{~F}_{\mathrm{s}}$ will be translated "flipped" in frequency (see Figure 1) This "flipping" action is identical to the effect seen in high-side injection mixing, and needs to be considered carefully if aliasing is to be used as part of the signal processing. The anti-alias filter in a conventional baseband system is a lowpass filter. In undersampling systems, the anti-alias filter must be a bandpass function.

U ndersampling offers several more challenges for the A/D converter designer: the higher speed input signals not only require wider input bandwidth on the A/D converter's sample-and-hold (SH A) circuit; they also impose tighter requirements on the jitter performance of the A/D converter and its sampling clock. To illustrate, compare a baseband system sampling a $100-\mathrm{kHz}$ sinewave signal and an IF undersampling system sampling a $100-\mathrm{M} \mathrm{Hz}$ sine-wave signal. In the baseband system, a jitter error of 100 ps produces a maximum signal error of 0.003% of full scale (peak-to-peak) - probably of no concern. In the IF undersampling case, the same 100-ps error produces a maximum signal error of 3% of full scale.

Figure 1. Aliasing, and frequency translation through undersampling.
Oversampling is not quite the opposite of undersampling (in fact, it is possible to have a system that is simultaneously oversampling and undersampling). Oversampling involves sampling the desired signal at a rate greater than that suggested by the N yquist criterion: for example, sampling a $200-\mathrm{kH}$ z signal at 1.6 M Hz , rather than the minimum 400 kHz required. T he oversampling ratio is defined:

$$
\text { OSR = sample rate/(} 2 \times \text { input bandwidth })
$$

O versampling offers several attractive advantages (Figure 2). The higher sampling rate may significantly ease the transition band requirements of the anti-alias filter. In the example above, sampling a $200-\mathrm{kH}$ z bandwidth signal at 400 kH z requires a "perfect" brickwall anti-alias filter, since interferers at 201 kHz will alias in-band to 199 kH z. (Since "perfect" filters are impossible, most systems employ some degree of oversampling, or rely on system specifications to provide frequency guard-bands, which rule out interferers at immediately adjacent frequencies). On the other hand, sampling at 1.6 M Hz moves the first critical alias frequency out to 1.4 M Hz , allowing up to 1.2 M Hz of transition band for the anti-alias filter.

Figure 2. Oversampling makes filtering easier.
Of course, if interferers at frequencies close to 200 kHz are very strong compared to the desired signal, additional dynamic range will be required in the converter to allow it to capture both signals without clipping (see part IV, A nalog D ialogue 31-2, for a discussion of dynamic range issues.) A fter conversion, oversampled data may be passed directly to a digital demodulator, or decimated to a data rate closer to N yquist. Decimation involves reducing the digital sampling rate through a digital filtering operation analogous to the analog anti-aliasing filter. A well-designed digital decimation filter provides the additional advantage of reducing the quantization noise from theA/D conversion. For a conventional A/D converter, a conversion gain correspnding to a 3-dB reduction in quantization noise is realized for every octave (factor-of-two) decimation. U sing the $1.6-\mathrm{MHz}$ sample rate for oversampling as above, and decimating down to the N yquist rate of 400 kHz , we can realize up to 6 dB in SNR gain (two octaves).
N oise-shaping converters, such as sigma-delta modulators, are a special case of oversampling converters. T he sampling rate of the modulator is its high-speed clock rate, and the antialiasing filter can be quite simple. Sigma delta modulators use feedback circuitry to shape the frequency content of quantization noise, pushing it to frequencies away from the signal band of interest, where it can be filtered away. This is possible only in an oversampled system, since by definition oversampled systems provide frequency space beyond the signal band of interest. Where conventional converters allow for a 3-dB/octave conversion gain through decimation, sigma-delta converters can provide $9-15-$, 21- or more dB /octave gain, depending on the nature of the modulator design (high-order loops, or cascade architectures, provide more-aggressive performance gains).
In a conventional converter, quantization noise is often approximated as "white"-spread evenly across the frequency spectrum. For an N -bit converter, the full-scale signal-toquantization noise ratio (SQ N R) will be ($6.02 \mathrm{~N}+1.76$) dB over the bandwidth from 0 to $F_{\delta} 2$. The "white" noise approximation works reasonably well for most cases, but trouble can arise when the clock and single-tone analog frequency are related through simple integer ratios-for example, when the analog input is exactly 1/4 the clock rate. In such cases, the quantization noise tends to "clump" into spurs, a considerable departure from white noise.
While much has been written in recent years about anti-aliasing and undersampling operations for A/D converters, corresponding filter problems at the output of D/A converters have enjoyed far less visibility. In the case of a D /A converter, it is not unpredictable interferers that are a concern, but the very predictable frequency images of the DAC output signal. For a better understanding of the DAC image phenomenon, Figure 3(a,b) illustrates an ideal
sine wave and DAC output in both the time and frequency domains. It is important to realize that these frequency images are not the result of amplitude quantization: they exist even with a "perfect" high-resolution DAC. The cause of the images is the fact that the D / A converter output exactly matches the desired signal only once during each clock cycle. During the rest of the clock cycle, the DAC output and ideal signal differ, creating error energy. The corresponding frequency plot for this time-domain error appears as a set of Fourier-series image frequencies (c). For an output signal at frequency $F_{\text {out }}$ synthesized with a DAC updated at $F_{\text {clock, }}$, images appear at $N F_{\text {clock }} \pm F_{\text {out. }}$. The amplitude of these images rolls off with increasing frequency according to

$$
\frac{\sin \pi\left(F_{\text {out }} / F_{\text {clock }}\right)}{\pi\left(F_{\text {out }} / F_{\text {clock }}\right)}
$$

leaving "nulls" of very weak image energy around the integer multiples of the clock frequency. M ost DAC outputs will feature some degree of clock feedthrough, which may exhibit itself as spectral energy at multiples of the clock. T his produces a frequency spectrum like the one shown in F igure 4.

Figure 3. Time domain and frequency domain representation of continuous time and discrete sampled sine wave, and an interpolated discrete sampled sine wave.

The task of the DAC reconstruction filter is to pass the highest desired output frequency, $\mathrm{F}_{\text {outmax }}$, and block the lowest image frequency, located at $F_{\text {clock }}-F_{\text {outmax, }}$, implying a smoothing filter transition band of $\mathrm{F}_{\text {clock }}-2 \mathrm{~F}_{\text {outmax }}$.

This suggests that as one tries to synthesize signals close to the N yquist limit ($\mathrm{F}_{\text {outmax }}=\mathrm{F}_{\text {clock }} / 2$), the filter transition gets impossibly steep. To keep the filter problem tractable, many designers use the rule of thumb that the DAC clock should be at least three times the maximum desired output frequency. In addition to the filter difficulties, higher frequency outputs may become noticeably attenuated by the sinx/x envelope: a signal at $\mathrm{F}_{\text {clock }} / 3$ is attenuated by 1.65 dB , a signal at $\mathrm{F}_{\text {clock }} / 2$ is attenuated by 3.92 dB .
Oversampling can ameliorate the D/A filter problem, just as it helps in the ADC case. (M ore so, in fact, since one need not worry about the strong-interferer problem.) The D/A requires an interpolation filter. A digital interpolation filter increases the effective data rate of the D/A by generating intermediate digital samples of the desired signal, as shown in Figure 3(a). Thefrequency-domain results are shown in (d, e): in this case $2 \times$ interpolation has suppressed the DAC output's first two images, increasing the available transition bandwidth for the reconstruction filter from $\mathrm{F}_{\text {clock }}-2 \mathrm{~F}_{\text {outmax }}$ to $2 \mathrm{~F}_{\text {clock }}-2 \mathrm{~F}_{\text {outmax }}$. T his allows simplification of the filter and may allow more-conservative pole placement-to reduce the passband phase distortion problems that are the frequent side effects of analog filters. Digital interpolation filters may be implemented with programmable DSP, with ASICs, even by integration with the D/A converter (e.g., AD 9761, AD 9774). Just as with analog filters, critical performance considerations for the interpolation filters are passband flatness, stop-band rejection (how much are the images suppressed?) and narrowness of the transition band (how much of the theoretical N yquist bandwidth ($\mathrm{F}_{\text {clock }} / 2$) is allowed in the passband?)
DACs can be used in undersampling applications, but with less efficacy than areADC s. Instead of using a low-pass reconstruction filter to reject unwanted images, a bandpass reconstruction filter can be used to select one of the images (instead of the fundamental). This is analogous to the ADC undersampling, but with a few complications. As Figure 3 shows, the image amplitudes are actually points on a $\sin x / x$ envelope in the frequency domain. The decreasing amplitude of $\sin x / x$ with frequency suggests that the higher frequency images will be attenuated, and the amount of attenuation may vary greatly depending on where the output frequency is located with respect to multiples of the clock frequency. The $\sin x / x$ envelope is the result of the DAC's "zero-order-hold" effect (the DAC output remains fixed at target output for most of clock cycle). T his is advantageous for baseband DAC s, but for an undersampling application, a "return-to-zero" DAC that outputs ideal impulses would not suffer from attenuation at the higher frequencies. Since ideal impulses are physically impractical, actual return-to-zero DAC s will have some rollof of their frequency-domain envelopes. This effect can be precompensated with digital filtering, but degradation of DAC dynamic performance at higher output frequencies generally limits the attractiveness of DAC undersampling approaches.
Frequency-domain images are but one of the many sources of spurious energy in a DAC output spectrum. While the images discussed above exist even when the D/A converter is itself "perfect", most of the other sources of spurious energy are the result of D/A converter non-idealities. In communications applications, the transmitter signal processing must ensure that these spurious outputs fall below specified levels to ensure that they do not create interference with other signals in the communications medium. Several specifications can be used
to measure the dynamic performance of D/A converters in the frequency domain (see Figure 4):

- Spurious-free dynamic range (SFDR)—the difference in signal strength (dB) between the desired signal (could be single tone or multi-tone) and the highest spurious signal in the band being measured (Figure 4). Often, the strongest spurious response is one of the harmonics of the desired output signal. In some applications, the SFDR may be specified over a very narrow range that does not include any harmonics. For narrowband transmitters, where the DAC is processing a signal that looks similar to a single strong tone, SFDR is often the primary spec of interest.
- Total harmonic distortion (THD)-while SFDR indicates the strength of the highest single spur in a measured band, THD adds the energy of all the harmonic spurs (say, the first 8).
- Two-tone intermodulation distortion (IM D) -if the D/A converter has nonlinearities, it will produce a mixing action between synthesized signals. For example, if a nonlinear DAC tries to synthesize signals at 1.1 and 1.2 MHz , second-order intermodulation products will be generated at 100 kHz (difference frequency) and 2.3 M Hz (sum frequency). Thirdorder intermodulation products will be generated at 1.3 M Hz ($2 \times 1.2-1.1$) and $1.0 \mathrm{M} \mathrm{Hz}(2 \times 1.1-1.2)$. The application determines which intermodulation products present the greatest problems, but the third-order products are generally more troublesome, because their frequencies tend to be very close to those of the original signals.
- Signal-to-noise-plus-distortion (SIN AD) -T H D measures just the unwanted harmonic energy. SIN AD measures all the non-signal based energy in the specified portion of the spectrum, including thermal noise, quantization noise, harmonic spurs, and nonharmonically related spurious signals. CDMA (code-division, multiple-access) systems, for example, are concerned with the total noise energy in a specified bandwidth: SINAD is a moreaccurate figure of merit for these applications. SINAD is probably the most difficult measurement to make, since many spectrum analyzers don't have low-enough input noise. The most straightforward way to measure a DAC 's SINAD is with an ADC of significantly superior performance.
These specifications, or others derived from them, represent the primary measures of a DAC's performance in signal-synthesis
applications. Besides these, there are a number of conventional DAC specifications, many associated with video DACs or other applications, that are still prevalent on DAC data sheets. These include integral nonlinearity (INL), differential nonlinearity (D N L), glitch energy (more accurately, glitch impulse), settling time, differential gain and differential phase. While there may be some correlation between these time-domain specifications and the true dynamic measures, the time-domain specs aren't as good at predicting dynamic performance.
Even when looking at dynamic characteristics, such as SFDR and SIN AD, it is very important to keep in mind the specific nature of the signal to be synthesized. Simple modulation approaches like QPSK tend to produce strong narrowband signals. The DAC's SFDR performance recreating a single tone near full scale will probably be a good indicator of the part's suitability for the application. On the other hand, modern systems often feature signals with much different characteristics, such as simultaneously synthesized multiple tones (for wideband radios or discrete-multitone (DM T) modulation schemes) and direct sequence spreadspectrum modulations (such as C D M A). T hese more-complicated signals, which tend to spend much more time in the vicinity of the DAC's mid- and lower-scale transitions, are sensitive to different aspects of D/A converter performance than systems synthesizing strong single-tone sine waves. Since simulation models are not yet sophisticated enough to properly capture the subtleties of these differences, the safest approach is to characterize the DAC under conditions that closely mimic the end application. Such requirements for characterization over a large variety of conditions accounts for the growth in the size and richness of the datasheets for D/A converters.

For Further Reading:
For detailed discussion of discrete time artifacts and the N yquist Theorem: Oppenheim, Alan V. and Schaeffer, Ronald W, Discrete TimeSignal Processing. Englewood Cliffs, NJ: Prentice H all, 1989.
For more details on sigma-delta signal processing and noise shaping: N orsworthy, Steven R, Schreier; Richard;Temes, Gabor C., D elta-Sigma Data Converters: Theory, D esign, and Simulation. N ew York: IEEE Press, 1997.
For more details on DAC spectral phenomena: Hendriks, Paul, "Specifying Communication DACs", IEEE Spectrum magazine, July, 1997, pages 58-69.

Figure 4. Different error effects in the output spectrum of a DAC.

DSP 101 Part 3: Implement Algorithms on a Hardware Platform

by Noam Levine and David Skolnick

So far, we have described the physical architecture of the DSP processor, explained how DSP can provide some advantages over traditionally analog circuitry, and examined digital filtering, showing how the programmable nature of DSP lends itself to such algorithms. Now we look at the process of implementing a finite-impulse-response (FIR) filter algorithm (briefly introduced in Part 2, implemented in ADSP-2100 Family assembly code) on a hardware platform, the ADSP-2181 EZ-K it Lite ${ }^{\text {Tm }}$. The implementation is expanded to handle data I / O issues.

USING DIGITAL FILTERS

M any of the architectural features of the DSP, such as the ability to perform zero-overhead loops, and to fetch two data values in a single processor cycle, will be useful in implementing this filter.
Reviewing briefly, an FIR filter is an all-zeros filter that is calculated by convolving an input data-point series with filter coefficients. Its governing equation and direct-form representation are shown in Figure 1.

Figure 1. Direct-form FIR filter structure.
In this structure, each " z -1" box represents a single increment of history of the input data in z-transform notation. Each of the successively delayed samples is multiplied by the appropriate coefficient value, $\mathrm{h}(\mathrm{m})$, and the results, added together, generate a single value representing the output corresponding to the nth input sample. The number of delay elements, or filter taps, and their coefficient values, determine the filter's performance.
The filter structure suggests the physical elements needed to implement this algorithm by computation using a DSP. For the computation itself, each output sample requires a number of multiply-accumulate operations equal to the length of the filter.
The delay line for input data and the coefficient value list require reserved areas of memory in the DSP for storing data values and coefficients. The DSP's enhanced H arvard architecture lets programmers store data in Program Memory as well as in Data M emory, and thus perform two simultaneous memory accesses in every cycle from the DSP's internal SRAM. With D ata M emory holding the incoming samples, and Program M emory storing the coefficient values, both a data value and a coefficient value can be fetched in a single cycle for computation.
This DSP architecture favors programs that use circular buffering (discussed briefly in Part 2 and later in this installment). The implication is that address pointers need to be initialized only at
the beginning of the program, and the circular buffering mechanism ensures that the pointer does not leave the bounds of its assigned memory buffer-a capability used extensively in the FIR filter code for both input delay line and coefficients. Once the elements of the program have been determined, the next step is to develop the DSP source code to implement the algorithm.

DEVELOPING DSP SOFTWARE

Software development flow for the ADSP-2100 Family consists of the following steps: architecture description, source-code generation, software validation (debugging), and hardware implementation. Figure 2 shows a typical development cycle.

Figure 2. Software development flow.
Architecture description: First, the user creates a software description of the hardware system on which the algorithm runs. The system description file includes all available memory in the system and any memory-mapped external peripherals. Below is an example of this process using the ADSP-2181 EZ-K it Lite.
Source-codegeneration: M oving from theory into practice, this step-where an algorithmic idea is turned into code that runs on the DSP - is often the most time-consuming step in the process. There are several ways to generate source code. Some programmers prefer to code their algorithms in a high-level language such as C ; others prefer to use the processor's native assembly language. Implementations in C may befaster for the programmer to develop, but compiled DSP code lacks efficiency by not taking full advantage of a processor's architecture.
Assembly code, by taking full advantage of a processor's design, yields highly efficient implementations. But the programmer needs to become familiar with the processor's native assembly language. M ost effective is combining C for high-level program-control functions and assembly code for the time-critical, math-intensive portions of the system. In any case, the programmer must be aware of the processor's system constraints and peripheral specifics. T he FIR filter system example in this article uses the native assembly language of the ADSP-2100 Family.
Software validation ("debugging"):T his phase tests the results of code generation-using a software tool known as a simulatorto check the logical flow of the program and verify that an algorithm is performing as intended. The simulator is a model of the DSP processor that a) provides visibility into all memory locations and processor registers, b) allows the user to run the DSP code either
continuously or one instruction at a time, and c) can simulate external devices feeding data to the processor.
Hardware implementation: H ere the code is run on a real DSP, typically in several phases: a) tryout on an evaluation platform such as EZ-K it Lite; b) in-circuit emulation, and c) production ROM generation. Tryout provides a quick go/no-go determination of the program's operation; this technique is the implementation method used in this article. In-circuit emulation monitors software debug in the system, where a tool such as an EZ-ICE ${ }^{\text {mn }}$ controls processor operation on the target platform. After all debug is complete, a boot ROM of the final code can be generated; it serves as the final production implementation.

WORKING WITH THE ADSP-2181 EZ-KIT LITE

Our example of the development cycle walks through the process, using theADSP-2181 EZ-K it Lite (development packageAD DS$21 x x-$ EZLITE) as the target hardware for the filter algorithm. The EZ-K it Lite, a low-cost demonstration and development platform, consists of a $33-\mathrm{M} \mathrm{Hz}$ ADSP-2181 processor, an AD 1847 stereo audio codec, and a socketed EPROM, which contains monitor code for downloading new algorithms to the DSP through an RS232 connection (Figure 3).

Figure 3. Layout of EZ-Kit Lite board.
To complete the architecture description phase, one needs to know the memory and memory-mapped peripherals that the DSP has available to it. Programmers store this information in a systemdescription file so that the development tools software can produce appropriate code for the target system. The EZ-K it Lite needs no memory external to the DSP, because available memory on-chip consists of the 16,384 locations of the ADSP-2181's Program Memory (PM) SRAM, and 16,352 locations of Data M emory (DM) SRAM. (32 DM locations used for system control registers are not available for working code). M ore information on the ADSP-2181, the EZ-Kit Lite's architecture, and related topics, can be found in texts mentioned at the end of this article.
Available system resources information is recorded in a system description file for use by the ADSP-2100 Family development tools. A system description file has a.SYS extension.T he following list shows a system description file [EZKIT _LT.SYS]:
.system EZ_LITE; /* gives a name to this system */
.adsp2181; /* specifies the processor */
.mmap0; \quad specifies that the system boots and that $* /$,
/* PM location 0 is in internal memory */
.seg/PM /RAM /ABS=0/code/data int_pm[16384];
.seg/DM/RAM/ABS=0 int_dm[16352];
.endsys; \quad * ends the description */

The listing declares 16,384 locations of PM as RAM, starting at address 0 , to let both code segments and data values be placed there. A Iso declared are 16,352 available locations of data memory as RAM, starting at address 0 . Because these processors use a H arvard architecture with two distinct memory spaces, PM address 0 is distinct from DM address 0 . The ADSP-2181 EZ-K it Lite's codec is connected to the DSP using a serial port, which is not declared in the system description file. To make the system description file available to other software tools, the System Builder utility, BLD 21, converts the .SYS file into an architecture, or .ACH, file. The output of the System Builder is a file named EZKIT_LT.ACH.
After writing the code (page 15), the next step is to generate an executable file, i.e., turn the code into instructions that the DSP can execute. First one assembles the DSP code. This converts the program file into a format that the other development tools can process. A ssembling also checks the code for syntax errors. N ext, one links the code to generate the DSP executable, using the available memory that is declared in the architecture file. The Linker fits all of the code and data from the source code into the memory space; the output is a DSP executable file, which can be downloaded to the EZ-K it Lite board.

GENERATING FILTER CODE

Part 2 of this series [Analog Dialogue 31-2, page 14, Figure 6] introduced a small assembly code listing for an FIR filter. Here, that code is augmented to incorporate some EZ-K it Lite-specific features, specifically codec initialization and data I / O. The core filter-algorithm elements (multiply-accumulates, data addressing using circular buffers for both data and coefficients, and reliance on the efficiency of the zero-overhead loop) do not change.
The incoming data will be sampled using the on-board AD 1847 codec, which has programmable sampling rate, input gain, output attenuation, input selection, and input mixing. Its programmable nature makes the system flexible, but it also adds a task of programming to initialize it for the DSP system.

ACCESSING DATA

For this example, a series of control words to the codec-to be defined at the beginning of the program in the first section of the listing-will initialize it for an $8-\mathrm{kH}$ z sampling rate, with moderate gain values on each of the input channels. Since the AD 1847 is programmable, users would typically reuse interface and initialization code segments, changing only the specific register values for different applications. T his example will add the specific filter segment to an existing code segment found in the EZ-Kit Lite software.
This interface code declares two areas in memory to be used for data I/O: "tx_buf", for data to be transmitted out of the codec, and "rx_buf", where incoming data is received. Each of these memory areas, or buffers, contains three elements, a control or status word, left-channel data, and right-channel data. For each sample period, the DSP will receive from the codec a status word, left channel data, and right channel data. On every sample period, the DSP must supply to the codec a transmit control word, left channel data, and right channel data. In this application, the control information sent to the codec will not be altered, so the first word in the transmit data buffer will be left as is. We will assume that the source is a monophonic microphone, using the right channel (no concern about left-channel input data).

U sing the I/O shell program found in the EZ-K it Lite software, we need only be involved with the section of code labeled "input_samples". This section of code is accessed when new data is received from the codec ready to be processed. If only the right channel data is required, we need to read the data located in data memory at location rx_buf +2 , and place it in a data register to be fed into the filter program.
The data arriving from the codec needs to be fed into the filter algorithm via the input delay line, using the circular buffering capability of the AD SP-2181. T he length of the input delay line is determined by the number of coefficients used for the filter. Because the data buffer is circular, the oldest data value in the buffer will be wherever the pointer is pointing after the last filter access (Figure 4). Likewise the coefficients, always accessed in the same order every time through the filter, are placed in a circular buffer in Program M emory.

Figure 4. Example of using circular buffers for filter data input.

Algorithm Code

To operate on the received data, the code section published in the last installment can be used with few modifications. To implement this filter, we need to use the multiply/accumulate (MAC) computational unit and the data address-generators.
The ADSP-2181's M AC stores the result in a 40-bit register (32 bits for the product of 2 16-bit words, and 8 bits to allow the sum to expand without overflowing).T his allows intermediatefilter values to grow and shrink as necessary without corrupting data. The code segment being used is generic (i.e., can be used for any length filters); so the M AC's extra output bits allow arbitrary filters with unknown data to be run with little fear of losing data.
To implement the FIR filter, the multiply/accumulate operation is repeated for all taps of the filter on each data point. To do this (and be ready for the next data point), the MAC instruction is written in the form of a loop. The ADSP-21xx's zero-overhead loop capability allows the MAC instruction to be repeated for a specified number of counts without programming intervention. A counter is set to the number of taps minus one, and the loop mechanism automatically decrements the counter for each loop operation. Setting the loop counter to "taps-1" ensures that the data pointers end up in the correct location after execution is finished and allows the final M AC operation to include rounding. As theAD 1847 is a 16 -bit codec, the M AC with rounding provides a statistically unbiased result rounded to the nearest 16-bit value. This final result is written to the codec.

For optimal code execution, every instruction cycle should perform a meaningful mathematical calculation. The ADSP-21xxs accomplish this with multi-function instructions: the processor can perform several functions in the same instruction cycle. For the FIR filter code, each multiply-accumulate (MAC) operation
can be performed in parallel with two data accesses, one from D ata M emory, one from Program M emory. T his capability means that on every loop iteration a M AC operation is being performed. At the same time, the next data value and coefficient are being fetched, and the counter is automatically decremented. All without wasting time maintaining loops.
As the filter code is executed for each input data sample, the output of the M AC loop will be written to the output data buffer, tx_buf. Although this program only deals with single-channel input data, the result will be written out to both channels by writing to memory buffer addresses tx_buf+1 and tx_buf+2.
The final source code listing is shown on page 15. The filter algorithm itself is listed under "Interrupt service routines". The rest of the code is used for codec and DSP initialization and interrupt service routine definition. T hose topics will be explored in future installments of this series.

THE EZ-KIT LITE

TheW indows-based monitor software provided with the EZ-K it Lite, makes it possible to load an executable file into the ADSP2181 on the EZ-K it Lite board. T his is accomplished through the pull-down "L oading" menu by selecting "D ownload user program and Go" (Figure 5). This will download the filter program to the ADSP-2181 and start program execution.

Figure 5. EZ-Kit Lite download menu.

REVIEW AND PREVIEW

The goal of this article was to outline the steps from an al gorithm description to a DSP executable program that could be run on a hardware development platform. Issues introduced include software development flow, architecture description, source-code generation, data I/O, and the EZ-K it Lite hardware platform
There are many levels of detail associated with each of these topics that this brief article could not do justice to. F urther information is available in the references below. The series will continue to build on this application with additional topics. T he next article will examine data input/output (I/O) issues in greater detail through the processor interrupt structure, and discuss additional features of the simple filter algorithm.

REFERENCES

A DSP-2100 Family A ssembler Tools \& Simulator M anual. Consult your local Analog Devices Sales Office.
ADSP-2100 Family User's M anual. Analog Devices. Free. Circle 4

FIR Filter code listing for EZ-Kit Lite

Amplifiers, D/A Converters, References $\mathbf{2 6 0}-\mathrm{MHz}$ Dual Buffer Triple I_{FB} Op Amp
 AD8079: 0.01\% $\Delta \mathrm{G}, \mathbf{0 . 0 2}{ }^{\circ} \Delta \Phi$ $\pm \mathbf{0 . 1 - d B}$ flat to $\mathbf{5 0} \mathbf{~ M H z}$

 AD8023 has 250-MHz BW

 AD8023 has 250-MHz BW Drives heavy capacitive loads

 Drives heavy capacitive loads}

The AD 8079 is a dual fixed gain buffer for video and other wideband applications. It is optionally available with pin-strappable fixed gains of $+2,+1$, and -1 (A grade) and +2.2 , +1 , and -1.2 (B grade); the latter permits compensation of system gain losses. The 70mA output can drive up to 8 video loads. Bandwidth is $260 \mathrm{MHz}(-3 \mathrm{~dB})$, and response is flat within $\pm 0.1 \mathrm{~dB}$ to $>50 \mathrm{M} \mathrm{Hz}$.
Typical applications are for differential driving of twisted pair wiring, and for buffering inputs and outputs of switches, such as the AD 8116 crosspoint. D ifferential gain and phase errors are 0.01% and 0.02°, respectively, and crosstalk is -70 dB at 5 M H z. Quiescent dissipation is only 50 mW per amplifier. The device operates on supplies from $\pm 3 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ and is available in an 8-pin plastic SOIC. Prices start at $\$ 3.50$ (1000s).
Faxcode* 2072 or Circle 5

14-Bit, 125-MSPS D/A AD9764 TxDAC ${ }^{\text {® }} 2.7$ to 5.5 V Optimized for SFDR, THD, IMD

TheAD 9764 brings 14-bit-resolution to the TxDAC ${ }^{\circledR}$ series of high-performance, lowpower, pin-compatible CM OS DAC s. It is designed for reconstructing wideband, high-dynamic-range signals in communications and test equipment. Its excellent IM D and SFDR performance for single- and multitone signals upgrades existing communication systems and permits new wideband transmit architectures. Its applications include base stations and ADSL \& HFC cable modems.
Characteristics include update rate of 100 M SPS min, 125 typical, 2.7 to $5.5-\mathrm{V}$ supply voltage, on-chip reference, $20-\mathrm{mA}$ current output, 45 mW dissipation @ 3V, and Sleep mode. The CM OS device is available in a 28-lead SOIC for temperatures from -40 to $+85^{\circ} \mathrm{C}$. An evaluation board is available. Prices are $\$ 19.18$ in 1000s for theAD 9764, $\$ 150$ for the evaluation board.

Faxcode* 2057 or Circle 8

The AD 8023 has a trio of fast-settling current-feedback operational amplifiers with individual Disable on a single silicon chip. They can drive loads (including capacitive) at up to 70 mA , while drawing only 10 mA max quiescent current. This makes the device useful in RGB video systems that require good flatness over a wide bandwidth, while drawing minimal power. Bandwidth is 250 M Hz (10 M Hz with $0.1-\mathrm{dB}$ flatness), with $1200 \mathrm{~V} / \mathrm{\mu s}$ slew rate and $30-$ ns 0.1% settling ($300 \mathrm{pF}, 1 \mathrm{k} \Omega$ load).
Video differential gain and phase errors are 0.06% and 0.02°. The D isable feature (1.3mA power-down, high-impedance output) turnoff time is 30 ns. TheAD 8023 operates $\left(-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ with single (+4.2 to +15 V) or dual (± 2.1 to $\pm 7.5 \mathrm{~V}$) supplies, and the device is housed in a 14-lead plastic SOIC. Price (1000s) is \$3.99.
Faxcode* 2192 or Circle 6

Dual 10-Bit TxDAC $+^{\text {TM }}$ 40-MSPS AD9761 for I\&Q has dual $2 \times$ interpolation filters

The AD 9761, the latest addition to AD I's family of transmit DAC s, is a subsystem-on-a-chip, based on the TxDAC ${ }^{\circledR}$ core (see adjacent story). It consists of a matched pair of high-performance $40-\mathrm{M}$ SPS 10 -bit DACs, optimized for low distortion (58-dB SINAD, 9.5 ENOB, 65-dB SFDR) for flexible handling of QAM I \& Q data. Included are a pair of $2 x$ digital interpolation filters with $62.5-\mathrm{dB}$ stop-band rejection and an on-chip 1.2-V reference.
The AD 9761 provides $10-\mathrm{mA}$ of output current and operates on a 2.7 to $5.5-\mathrm{V}$ supply with only 200 mW dissipation at 3 V . A Sleep mode reduces input current by a factor of about 9. The DACs share a common 20-M SPS interleaved data interface. Operation is from -40 to $+85^{\circ} \mathrm{C}$, and the device is housed in a 28 -lead SSOP. Its price (1000s) is \$11.95.

uPower References Low-noise ADR290/291/292 XFET ${ }^{\text {im }}$: Better than bandgap

The ADR290, ADR291, and ADR 292 are precision 2.048, 2.5, and 4.096-V low-noise micropower precision references. They employ a new reference technology, XFET ${ }^{\text {m }}$ (eX tra implanted junction FET), offering the benefits of low supply current and very low thermal hysteresis, with substantially lower noise than bandgaps and lower power than buried Zeners.
They are specified for 2.7, 3.0, and 5.0-V min supply voltage, 15,15 , and $18 \mu \mathrm{~A}$ max supply current, 420, 480, and $640 \mathrm{nV} / \mathrm{NHz}$ noise density at 1 kH z. T he best grades have initial accuracy to within $\pm 2-\mathrm{mV}$ and 8 -ppm $1{ }^{\circ} \mathrm{C}$ tempco. M inimum full-load output current is 5 mA . Each is available in three performance grades specified at -40 to $+85^{\circ} \mathrm{C}$ and -25 to $+85^{\circ} \mathrm{C}$. They are available in 8-lead SOICs and TO-92s, and 3 -pin T SSO Ps. Prices start at $\$ 1.95$ in 1000 s.

Faxcode* $\mathbf{2 1 1 0}$ or Circle 7

 ■
Dual 8-Bit Serial DAC

Lo-power +2.7/+5.5-V Ad7303

 in 8-pin PDIP, SOIC, μ SOICThe AD 7303 is a dual 8 -bit serial input, voltage-output D/A converter with a supply voltage range of +2.7 to +5.5 V . Its on-chip precision output voltage buffers allow the DAC outputs to swing rail-to-rail. The shared input is a 3-wire serial interface that operates at clock rates up to 30 M Hz ; it is compatible with QSPI, SPI, microwire, and digital signal-processor interface standards. The control portion of the 16 -bit input register addresses the relevant DAC, provides device or chip power-down, selects internal or external reference, and can provide for simultaneous updating.
Ideal for portable battery-operated equipment, the AD 7303 consumes only 7.5 mW max at 3 V and less than $3 \mu \mathrm{~W}$ with full power-down. It is available in 8-pin plastic DIP, SOIC , and μ SOIC, for -40 to $+105^{\circ} \mathrm{C}$. Prices start at $\$ 2.35$ in 1000 s .

[^2]
Analog-to-Digital Converters
 8-Bit, 32-MSPS ADC
 Low-\$ AD9280: 2.7 to 5.5 V Has 300-MHz analog BW 8- \& 10-Bit ADCs
 2.7 to 5.5-V AD7819/AD7813 have 200/400-ksps thruput

The AD 9280 is a low cost 8-bit, 32-M SPS A/D converter with 2.7 to $5.5-\mathrm{V}$ singlesupply operation and low power consumption (95 mW at 3 V). It has a widebandwidth input sample-hold (300 M Hz), a programmable internal reference, and a flexible input structure. It also incorporates clamping (useful in video "dc restoring"), Sleep mode (to conserve power), an out-of-range indicator, and 3 -state output buffers. The AD 9280 is used to digitize high-speed analog data in video, CCD signal chains (scanners, etc.), and communications systems.
Performance includes differential nonlinearity of 0.2 LSB, and 7.7 ENOB at 16 MHz . The AD 9280 is housed in a 28 pin SSOP, for temperatures from -40 to $+85^{\circ} \mathrm{C}$, and is pin-compatible to the 10 -bit AD 9200. Price in 1000s is $\$ 3.37$
Faxcode* $\mathbf{2 1 6 3}$ or Circle 11

8-, 10-Bit Serial ADCs AD7823/AD7810 operate on 2.7-5.5 V; 8-pin DIP, SO, $\boldsymbol{\mu}$ SO

 The AD 7823 and AD7810 are pincompatible 8 - and 10 -bit low-power singlesupply sampling A/D converters with serial interfaces and maximum throughput rates of 135 and 350 ksps . They are housed in 8 pin DIP, SOIC and μ SOIC packages. N ormal dissipation, a low 17.5 mW max in full operation, drops to $5 \mu \mathrm{~W}$ max in power down (data can be read); and in automatic-power-down-between-conversions mode, the AD 7810 dissipates only $27 \mu \mathrm{~W}$ max at 1 ksps , and 2.7 mW max at 100 ksps .Both devices have microcontrollercompatible serial interfaces for fast, easy interfacing. The AD 7823 and AD 7810 operate over respective temperature ranges of -40 to $+125^{\circ} \mathrm{C}$ and -40 to $+105^{\circ} \mathrm{C}$. They can use an external precision reference or the power supply. DIP-package prices (1000s) are respectively $\$ 1.95 \& \$ 2.45$.
Faxcode* 2085, 2061 or Circle 15, 16 ■

The AD7819 and AD 7813 are pincompatible 8 - and 10 -bit low-power singlesupply sampling A/D converters. They are housed in 16-pin DIP, SOIC and TSSOP packages. Normally dissipating a low 17.5 mW max in full operation, they dissipate $5 \mu \mathrm{~W}$ max in power down; and in the automatic-power-down-betweenconversions mode, the AD 7813 dissipates only $34.6 \mu \mathrm{~W}$ max at 1 ksps , and 3.5 mW max at 100 ksps .

Both devices have an identical 8-bit parallel interface for easy interfacing to $\mu \mathrm{Ps}$ and DSPs.T he AD 7813 reads out 10 bits with a 2nd 2-bit byte. The AD 7819 and AD 7813 operate over respective temperature ranges of -40 to $+125^{\circ} \mathrm{C}$ and -40 to $+105^{\circ} \mathrm{C}$. They can use an external precision reference or the power supply. Prices (1000s) are $\$ 1.95$ (AD 7819) and \$2.55 (AD 7813).
Faxcode* 2064, 2063 or Circle 12, 13 ■

24-Bit $\Sigma-\Delta$ ADC
 AD7731 has buffered inputs serial interface, on-chip PGA
 TheAD 7731 is a complete 24-bit low-noise

 (55 nV rms typical), high-throughput A/D converter for industrial measurement and process-control applications. It incorporates a 7-step binary-programmable-gain amplifier, allowing input signal ranges from 20 mV to $\pm 1.28 \mathrm{~V}$. Throughput is programmable, from 50 Hz up to 6400 Hz . T he sigma-delta architecture uses an analog modulator and a low-pass programmable digital filter, allowing adjustment of filter cutoff, output rate, and settling time.Its 3-wire serial output is compatible with microcontrollers \& digital signal processors. It operates from a single $+5-\mathrm{V}$ power supply and can accept external references ranging from 1 V up to (and including) the $+5-\mathrm{V}$ positive rail. It is available for -40 to $+85^{\circ} \mathrm{C}$ packaged in 24-lead PDIP, SO, andT SSOP. 1000 -lot price is $\$ 9.86$.
Faxcode* $\mathbf{2 1 3 1}$ or Circle 17

4- \& 8-Channel ADCs

10-bit serial AD7811/AD7812: 350 ksps thruput, 2.5-5.5 V_{s}
The AD 7811 and AD 7812 are 10 -bit sampling A / D converters with serial digital interfaces and multiplexed 4 - and 8-channel analog inputs. T hey operate from 2.7 to 5.5V supplies and have a maximum throughput of 350 ksps . T hey accept analog inputs over the range of 0 V to $+\mathrm{V}_{\mathrm{DD}}$; and users can employ the on-chip references, external precision references, or the supply voltage. Their low power consumption ($315 \mu \mathrm{~W}$ at 10 ksps), ability to power down after conversions, and small package size (16 -pin TSSOP) make these devices particularly suitable for portable and power-consumption-critical applications.
The serial interface is compatible with the serial interfaces of most $\mu \mathrm{C} s$ and DSPs. A Package Address pin allows bus sharing. O peration is specified from -40 to $+105^{\circ} \mathrm{C}$. Prices (1000s) are $\$ 2.90$ and $\$ 3.30$.
Faxcode* 2062 or Circle 14

16-Bit, 5-V ADCs AD977 upgrades ADS7809 AD977A: 200-ksps thruput

T he AD 977 and AD 977A are 16-bit serialoutput A/D converters with a wide choice of analog input ranges ($\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 3.3 \mathrm{~V}$, and 0 to 10,5 , and 4 V). Requiring minimal support circuitry and low power, they contain internal references, provide low cost/performance, and run from a single $+5-\mathrm{V}$ supply. Their inputs are protected against voltages up to $\pm 25 \mathrm{~V}$. Consuming only 100 mW , the AD 977A runs at 200 ksps (100 ksps for the AD 977). In the powerdown mode, dissipation is only $50 \mu \mathrm{~W}$.

The devices contain a successiveapproximation ADC, an internal $2.5-\mathrm{V}$ reference, and a high-speed serial interface, and include on-chip clock circuits. Available in 20-lead plastic DIPs and SOIC s, and 28lead SSOPs, they operate from -40 to $+85^{\circ} \mathrm{C}$. Price (1000s) in PDIP is $\$ 20$ for AD 977, and $\$ 26$ for AD 977A.
■ Faxcode* $\mathbf{1 9 5 8}$ or Circle 18

[^3]Digital Communication and Supervisory

DECT IF Transceiver AD6402 integrated subsystem for multichannel base stations

The AD 6402 is an IF subsystem used in high-performance TDMA (time-domain multiple access) digital radios employing FSK, GFSK, FM, and QPSK modulation schemes. Designed primarily for digital enhanced cordless communication (DECT), it can be used in any similar radio architecture with 1-M BPS bit rates. Highly integrated, it includes a limiter stage with inter-stage filter, RSSI detection, a PLL demodulator, IF VCO, IF buffers, VCO regulator, and power management.
The AD6402 has multiple power-down modes to maximizebattery life. Using an onchip PLL demodulator, it requires no manufacturing trims; an integrated 2nd IF filter further reduces external component count. It will operate with $\geq 2.7-\mathrm{V}$ supply, is housed in a 28 -pin SSOP, and operates from -25 to $+85^{\circ} \mathrm{C}$. Price in 1000 s is $\$ 6.55$.
Faxcode* $\mathbf{2 2 5 6}$ or Circle 19

DDS with On-Chip D/A

AD9832 is complete, for

 $\mathbf{2 5 - M H z}$ clock, has $\mathbf{1 0}$-bit DACThe AD 9832 is a low-cost, complete direct digital synthesizer (DDS) on a chip, with 25MHz clock speed and 10 -bit resolution. It includes a phase accumulator, sine lookup table, and on-chip D/A converter to generate an output sine wave with an SFDR of 72 dBc . On-chip frequency and phase registers can be used to perform modulation, such as FSK, PSK, and QPSK. F requency accuracy can be controlled to 1 part in 4×10^{9}. A serial interface is provided for loading settings and modulation signals.
Typical applications include DDS tuning and digital demodulation. Housed in a 16pinT SSOP, it operates with a $3-$ or $5-\mathrm{V}$ single supply, consuming 45 mW . A power-down capability ($3 \& 5 \mathrm{~mW}$ residual power with $3-\& 5-\mathrm{V}$ supplies) aids power conservation in battery-powered operations. Operation is from -40 to $+85^{\circ} \mathrm{C}$. Price in 1000 s is $\$ 5.00$.
Faxcode* $\mathbf{2 2 1 0}$ or Circle $\mathbf{2 2}$
axcae 2 这

1-Chip RAS Modem Interfaces ISP serial T1 or
E1 lines to digital network The ADSP-21mod870 is the world's first complete single-chip digital modem for remote access servers (RAS). It is optimized for implementing a complete $\mathrm{V} .34 / 56 \mathrm{~K}$ modem. Since its bundled cost includes software, controller, memory, and data pump, it needs no external memory or data controller. At $2.58 \mathrm{~cm}^{2}\left(0.4 \mathrm{n}^{2}\right)$, and dissipating only $140 \mathrm{~mW}(3.3 \mathrm{~V})$ in the active mode, it has the smallest size and lowest dissipation per channel-plus the lowest cost-among available alternatives.
Based on the ADSP-2100 family architecture, each chip (i.e., modem port) can be reprogrammed on demand. New protocols can be downloaded, existing protocols updated. Any protocols may be loaded automatically depending on the user's modem speed. Packaging is 100 -pin T Q FP. Bundled per-channel cost is $\$ 28$.

- Circle 20

■

RS-485 Transceivers

Full-duplex ADM488, 489

 are in 8-pin μ SOIC, TSSOP-14TheADM 488 and ADM 489 are low-power full-duplex (receive and transmit) differential line transceivers suitable for communication on multipoint bus transmission lines. Like other industry-standard devices, they meet EIA Standards RS-485 and RS-422, but with less quiescent current ($37-\mu \mathrm{A} \mathrm{I}_{\mathrm{D}}$), greater supply tolerance (10%), and smaller packaging (TSSOP: ADM 489) than is typically available in comparable devices.
In addition, their 2 -kV EFT protection meets IEC 1000-4-4, and EMI immunity meets IEC 1000-4-3. They are short-circuit protected and have controlled slew rate for Iow EMI.The ADM489 is available in 14 pin DIP and SOIC, as well as 16 -pinT SSOP; the ADM488 is in 8 -lead plastic DIP and narrow-body solC. Supply voltage is +5 V ; operation is from -40 to $+85^{\circ} \mathrm{C}$. Price (1000s) is $\$ 1.10$.

MODIO ${ }^{\text {m }}$ HSP Codec

AD1821 single-chip audio \& comm subsystem for PCs

The single-chip AD 1821 MODIO ${ }^{\mathrm{TM}}$ (modem over audio) Soundcomm ${ }^{\text {TM }} \mathrm{HSP}$ audio and communications subsystem for personal computers includes the AD 1821 mixed-signal controller IC and M ODIO host signal-processing (HSP) software drivers. It has full legacy compatibility with applications written for Soundblaster Pro and AdLib, also servicing M icrosoft PC 97 applications.
Included are an OPL3-compatible music synthesizer, Phat ${ }^{T M}$ circuitry for stereo output phase expansion, a joystick interface with timer, serial ports for D SP and $I^{2} \mathrm{~S}(2)$. The MODIO drivers use CPU resources to implement the flow of high-speed fax, data, and voice (with Echo Cancellation) while simultaneously handling audio signals. The AD 1821 operates from a $+5-\mathrm{V}$ supply, is housed in a 100-lead PQFP. Price (10,000 per month) is $\$ 18$ ($\$ 15$ modem only).

Faxcode* 2252 or Circle 21

μ P Supervisory IC

 ADM1232 provides manual or Vcc-out-of-tolerance Reset The ADM 1232 is a microprocessor supervisory circuit with existing second sources. It can monitor $\mu \mathrm{P}$ supply voltage tolerance (selectable-5\%, -10\%); it can detect an external interrupt; and its watchdog timer determines (with selectable time delay) when the $\mu \mathrm{P}$ has locked up. The device can then respond to any of these stimuli with a direct or complementary RESET signal.A universally required component of digital systems, typical applications of the ADM 1232 are in microprocessor systems, portable equipment, computers, controllers, intelligent instruments, automotive systems, and for protection against $\mu \mathrm{P}$ failure. The ADM 1232 operates at +5 V , with $500-\mu \mathrm{A}$ maximum quiescent current drain. It is available for -40 to $+85^{\circ} \mathrm{C}$ in 8 lead PDIP, narrow SOIC, and microSOIC, as well as 16 -lead wide SOIC. Price (1000s) is $\$ 0.90$.

[^4]
Signal Processing, Regulation, CCD/CIS Processor 10-bit AD9805 is complete 1-chip CCD imaging front end

The AD 9805, like the pin-compatible 12 bit A D 9807 (A nalog Dialogue 31-1, p. 19), is a complete single-chip analog front end (AFE) for converting outputs from CCD (charge-coupled device) and CIS (contact image sensor) modules to digital data. It requires no external active circuitry, just a few capacitors. Typical applications are in scanners and other CCD signal-processing applications, such as digital cameras.
It includes a 10-bit, 6-M SPSA/D converter, an integrated triple-correlated double sampler, programmable-gain amplifiers, pixel rate digital gain and offset adjustments, an internal voltage reference, and a $\mu \mathrm{P}$ compatible control interface. It uses a 5-V supply (500 mW) and is compatible with $3.3-$ and $5-V$ digital $I / 0$. Specified for 0 to $+70^{\circ} \mathrm{C}$, it is packaged in a 64 -pin PQFP. Price (1000s) is $\$ 9.50$
Faxcode* 2021 or Circle 27
■
\& Control CCD Processor

For electronic cameras: 10bit 18-MSPS full speed CDS

The AD9801 is a complete CCD signal processor developed for electronic cameras. It is well-suited for both video conferencing and consumer-level still camera applications. Its signal-processing chain comprises a highspeed (18-M SPS) correlated double sampler (CDS), a low noise, wideband variable-gain amplifier (0 to 31.5 dB , linear in dB), and a 10 -bit, 18 -M SPS A/D converter (± 0.5-L SB DNL, no-missing-codes guaranteed). Also included are an on-chip voltage reference and the required clamping circuitry for simple ac coupling. Digital output control is 3 -state.
The AD 9801 operates from a single $+3-\mathrm{V}$ supply and typically consumes 185 mW (15 mW in power-down mode). It is packaged in space-saving 48-pinT QFP and specified for an operating temperature range of 0 to $+70^{\circ} \mathrm{C}$. Price is $\$ 8.50$ (1000 s).

Faxcode* 2118 or Circle 28

LD Regulators 50/200-mA ADP3300/3303

use any type quality capacitor TheAD P3300 and AD P3303 are anyC AP ${ }^{\text {TM }}$ low-dropout linear regulators with wide input voltage range (3.2 to 12 V), high accuracy ($\pm 0.8 \%$ @ $25^{\circ} \mathrm{C}$), and low dropout voltage. The 50-mA ADP3300, with dropout voltage of 80 mV , is housed in a tiny SOT 23-6 package; and the 200-mA ADP3303 (180 mV) inhabits an efficient thermally enhanced SO-8 package. Both devices offer a range of optional regulated output voltages: 2.7, 3.0, $3.2,3.3$ and 5.0 V .
B oth devices are stable with a wide range of capacitor values ($\geq 0.47 \mu \mathrm{~F}$), types, and ESR s (anyCAP ${ }^{\text {TM }}$). Both have low noise, dropout detector, current- and thermal limiting, and $1-\mu \mathrm{A}$ shutdown current. T he AD P 3300 operates from -40 to $+85^{\circ} \mathrm{C}$, the AD P3303 from -20 to $+85^{\circ} \mathrm{C}$ ambient. Their respective prices are $\$ 0.86$ and $\$ 1.14$ in 1000s.

Faxcode* 2126 or Circle 29

Regulator Controller ADP3310 is a low-noise high precision LDO in 8-pin SOIC The ADP3310 is a precision voltageregulator controller that can be used with an external power PM OS device, such as the N D P6020P, to form a two-chip low-dropout linear regulator with only 70 mV of dropout voltage at 1 A . Its low headroom, low quiescent current ($800 \mu \mathrm{~A}$), and low shutdown current ($1 \mu \mathrm{~A}$) help prolong battery life in battery-powered systems. Its accuracy spec is $\pm 1.5 \%$ over line, load, and temperature. H andling up to 10 A of current, it is stable with $10-\mu \mathrm{F}$ output capacitance.
Protection includes an internal gate-to source clamp, and current limiting, with foldback. Operating voltage is from +2.5 to +15 V . It is packaged in an 8-lead SOIC and has a 40 to $+85^{\circ} \mathrm{C}$ ambient temperature range. 4 fixed output options are available: 1.8, 3, 3.3, \& 5 V . Price (1000s) is \$0.94.

- Faxcode* 2042, 2043 or Circle 31, 32 ■

[^5]
Ask The Applications Engineer-26

by Mary McCarthy \& Anthony Collins

SWITCHES AND MULTIPLEXERS

Q. A nalog Devices doesn't specify the bandwidth of its ADG series switches and multiplexers. Is there a reason?
A. TheADG series switches and multiplexers have very high input bandwidths, in the hundreds of megahertz. However, the bandwidth specification by itself is not very meaningful, because at these high frequencies, the off-isolation and crosstalk will be significantly degraded. For example, at 1 M Hz , a switch typically has off-isolation of 70 dB and crosstalk of -85 dB . Both off-isolation and crosstalk degrade by 20 dB per decade. This means that at 10 M Hz , the off-isolation is reduced to 50 dB and the crosstalk increases to -65 dB . At 100 M Hz , the off-isolation will be down to 30 dB while the crosstalk will have increased to -45 dB . So it is not sufficient to consider bandwidth alone-the off-isolation and crosstalk must be considered to determine if the application can tolerate the degradation of these specifications at the required high frequency.
Q. Which switches and multiplexers can be operated with power supplies less than those specified in the data sheet?
A. All of the ADG series switches and multiplexers operate with power supplies down to +5 V or $\pm 5 \mathrm{~V}$. The specifications affected by power-supply voltage are timing, on resistance, supply current and leakage current. Lowering power supply voltage reduces power supply current and leakage current. For example, the ADG411's $I_{\text {SOFF) }}$ and $I_{\text {D(OFF) }}$ are $\pm 20 \mathrm{nA}$, and $\mathrm{I}_{\mathrm{D}(0 \mathrm{~N})}$ is $\pm 40 \mathrm{nA}$, at $+125^{\circ} \mathrm{C}$ with $a \pm 15-\mathrm{V}$ power supply. When the supply voltage is reduced to $\pm 5 \mathrm{~V}, I_{\text {S(OFF) }}$ and $I_{\text {D(OFF) }}$ drop to $\pm 2.5 \mathrm{nA}$, while $\mathrm{I}_{\text {D(ON) }}$ is reduced to $\pm 5 \mathrm{nA}$ at $+125^{\circ} \mathrm{C}$. The supply currents, $I_{D D}, I_{S S}$ and I_{L}, are $5 \mu \mathrm{~A}$ maximum at $+125^{\circ} \mathrm{C}$ with $\mathrm{a} \pm 15-\mathrm{V}$ power supply. W hen $\mathrm{a} \pm 5-\mathrm{V}$ power supply is used, the supply currents are reduced to $1 \mu \mathrm{~A}$ maximum. The onresistance and timing increase as the power supply is reduced. The Figures below show how the timing and on-resistance of the AD G 408 vary as a function of power supply voltage.

Figure 1. On-Resistance vs Power Supply.

Figure 2. Timing vs Power Supply.
Q. Some of the ADG series switches are fabricated on the DI process. What is it?
A. DI is short for dielectric isolation. On the DI process, an insulating layer (trench) is placed between the NMOS and PM OS transistors of each CM OS switch. Parasitic junctions, which occur between the transistors in standard switches, are eliminated, resulting in a completely latchup-proof switch. In
junction isolation (no trench used), the N and P wells of the PM OS and NMOS transistors form a diode which is reversebiased in normal operation. However, during overvoltage or power-off conditions, when the analog input exceeds the power supplies, the diode is forward biased, forming a silicon controlled rectifier (SCR)-like circuit with the two transistors, causing the current to be amplified significantly, leading eventually to latch up. T his diode doesn't exist in dielectrically isolated switches, making the part latchup proof.

Figure 3. Dielectric Isolation.
Q. H ow do the fault-protected multiplexers and channel protectors work?
A. A channel of a fault-protected multiplexer or channel protector consists of two NM OS and two PM OS transistors. One of the PM OS transistors does not lie in the direct signal path but, is used to connect the source of the second PM OS to its backgate. This has the effect of lowering the threshold voltage, which increases the input signal range for normal operation. The source and backgate of the NM OS devices are connected for the same reason. D uring normal operation, the fault-protected parts operate as a standard multiplexer. When a fault condition occurs on the input to a channel, this means that the input has exceeded some threshold voltage which is set by the supply rail voltages. T he threshold voltages are related to the supply rails as follows: for a positive overvoltage, the threshold voltage is given by $V_{D D}-V_{T N}$ where $V_{T N}$ is the threshold voltage of the N M OS transistor (typically 1.5 V). For a negative overvoltage, the threshold voltage is given by $\mathrm{V}_{S S}-\mathrm{V}_{T P}$, where $\mathrm{V}_{T P}$ is the threshold voltage of the PM OS device (typically 2 V). W hen the input voltage exceeds these threshold voltages, with no load on the channel, the output of the channel is clamped at the threshold voltage.
Q. H ow do the parts operate when an overvoltage exists?
A. Thenext two figures show the operating conditions of the signal path transistors during overvoltage conditions. This one demonstrates how the series N, P and N transistors operate when a positive overvoltage is applied to the channel. T he first N M OS transistor goes into saturation mode as the voltage on its drain exceeds $\left(V_{D D}-V_{T N}\right)$. The potential at the source of the NMOS device is equal to $\left(V_{D D}-V_{T N}\right)$. The other M OS devices are in a non-saturated mode of operation.

${ }^{*} \mathrm{~V}_{\mathrm{TN}}=$ NMOS THRESHOLD VOLTAGE (+1.5V)
Figure 4. Positive Overvoltage on the Channel.

When a negative overvoltage is applied to a channel, the PM OS transistor enters a saturated mode of operation as the drain voltage exceeds ($\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{TP}}$). As with a positive overvoltage, the other M OS devices are non-saturated.

Figure 5. Negative Overvoltage on the Channel.
Q. H ow does loading affect the clamping voltage?
A. When the channel is loaded, the channel output will clamp at a value of voltage between the thresholds. For example, with a load of $1 \mathrm{k} \Omega, \mathrm{V}_{D D}=15 \mathrm{~V}$, and a positive overvoltage, the output will clamp at $\mathrm{V}_{D D}-\mathrm{V}_{T N}-\Delta \mathrm{V}$, where $\Delta \mathrm{V}$ is due to the IR voltage drop across the channels of the non-saturated M OS devices. In the example shown below the voltage at the output of the clamped NMOS is 13.5 V . The on-resistance of the two remaining M OS devices is typically 100Ω. Therefore, the current is $13.5 \mathrm{~V} /(1 \mathrm{k} \Omega+100 \Omega)=12.27 \mathrm{~mA}$. T his produces a voltage drop of 1.2 V across the N M OS and PM OS resulting in a clamp voltage of 12.3 V . T he current during a fault condition is determined by the load on the output, i.e., $\mathrm{V}_{\text {CLAm p }} / \mathrm{R}_{\mathrm{L}}$.

Figure 6. Determining the clamping point.
Q. Do the fault-protected multiplexers and channel protectors function when the power supply is absent.
A. Yes. These devices remain functional when the supply rails are down or momentarily disconnected. When $V_{D D}$ and $V_{S S}$ equal 0 V , all the transistors are off, as shown, and the current is limited to sub nanoampere levels.

Figure 7. Power Supplies Absent.
Q. W hat is " charge injection"?
A. Charge injection in analog switches and multiplexers is a level change caused by stray capacitance associated with the N M OS and PM OS transistors that make up the analog switch. The Figure below models the structure of an analog switch and the
stray capacitance associated with such an implementation. T he structure basically consists of an NM OS and PM OS device in parallel. T his arrangement produces the familiar "bathtub" resistance profile for bipolar input signals. T he equivalent circuit shows the main parasitic capacitances that contribute to the charge injection effect, $\mathrm{C}_{\text {GDN }}$ (N M OS gate to drain) and $\mathrm{C}_{\text {GDP }}$ (PM OS gate to drain). T he gate-drain capacitance associated with the PM OS device is about twice that of the N M OS device, because for both devices to have the same on-resistance, the PM OS device has about twice the area of the N M OS. Hence the associated stray capacitance is approximately twice that of theN M OS device for typical switches found in the marketplace.

figure 8

figure 9

Figure 8. CMOS Switch Structure showing parasitic capacitance. Figure 9. Equivalent circuit showing the main parasitics which contribute to charge injection.

When the switch is turned on, a positive voltage is applied to the gate of the NM OS and a negative voltage is applied to the gate of the PM OS. B ecause the stray gate-to-drain capacitances are mismatched, unequal amounts of positive and negative charge are injected onto the drain. The result is a removal of charge from the output of the switch, manifested as a negativegoing voltage spike. Because the analog switch is now turned on this negative charge is quickly discharged through the on resistance of the switch (100Ω). This can be seen in the simulation plot at $5 \mu \mathrm{~s}$. Then when the switch is turned off, a negative voltage is applied to the gate of the NMOS and a positive voltage is applied to the gate of the PM OS. T he result is charge added to the output of the switch. Because the analog switch is now off, the discharge path for this injected positive charge is a high impedance ($100 \mathrm{M} \Omega$). The result is that the load capacitance stores this charge until the switch is turned on again. T hesimulation plot clearly shows this with the voltage on C_{L} (as a result of charge injection) remaining constant at 170 mV until the switch is again turned on at $25 \mu \mathrm{~s}$. At this point an equivalent amount of negative charge is injected onto the output, reducing the voltage on C_{L} to 0 V . At $35 \mu \mathrm{~s}$ the switch is turned on again and the process continues in this cyclic fashion.

Figure 10. Timing used for simulation in Figure 11.

Figure 11. Output of simulation to show the effect of charge injection switching at 100 kHz .

At lower switching frequencies and load resistance, the switch output would contain both positive and negative glitches as the injected charge leaks away before the next switch transition.

Figure 12. Switch output at low switching frequencies and low resistive loads.
Q. W hat can be done to improve the charge injection performance of an analog switch?
A. As noted above, the charge injection effect is caused by a mismatch in the parasitic gate-to-drain capacitance of the NMOS and PMOS devices. So if these parasitics can be matched there will be little if any charge injection effect. T his is precisely what is done in Analog D evices CM OS switches and multiplexers. T he matching is accomplished by introducing a dummy capacitor between the gate and drain of the N M OS device.

Figure 13. Matching parasitics at $\mathrm{V}_{\text {SOURCE }}=0 \mathrm{~V}$ (ground).
Unfortunately the matching is only accomplished under a specific set of conditions, i.e., when the voltage on the Source of both devices is 0 V . T he reason for this is that the parasitic capacitances, $\mathrm{C}_{G D N}$ and $\mathrm{C}_{\text {GDP }}$, are not constant; they vary with the Source voltage. When the Source voltage of the NM OS and PM OS is varied, their channel depths vary, and with them, $C_{G D N}$ and $C_{G D P}$. As a consequence of this matching at $\mathrm{V}_{\text {Source }}=0 \mathrm{~V}$ the charge injection effect will be noticeable for other values of $\mathrm{V}_{\text {SOURCE }}$.

NOTE: C harge injection is usually specified on the data sheet under these matched conditions, i.e., $\mathrm{V}_{\text {Source }}=0 \mathrm{~V}$. U nder these conditions, the charge injection of most switches is usually quite good in the order of 2 to 3 pC max. H owever the charge injection will increase for other values of $\mathrm{V}_{\text {source }}$, to an extent depending on the individual switch. M any data sheets will show a graph of charge injection as a function of Source voltage.
Q. H ow do I minimize these effects in my application?
A. The effect of charge injection is a voltage glitch on the output of the switch due to the injection of a fixed amount of charge. The glitch amplitude is a function of the load capacitance on the switch output and also the turn on and turn off times of the switch. T he larger the load capacitance, the smaller will be the voltage glitch on the output, i.e., $\mathrm{Q}=\mathrm{C} \times \mathrm{V}$, or $\mathrm{V}=\mathrm{Q} / \mathrm{C}$, and Q is fixed. N aturally, it may not always be possible to increase the load capacitance, because it would reduce the bandwidth of the channel. H owever, for audio applications, increasing the load capacitance is an effective means of reducing those unwanted "pops" and "clicks".
C hoosing a switch with a slow turn on and turn off time is also an effective means of reducing the glitch amplitude on the switch output. The same fixed amount of charge is injected over a longer time period and hence has a longer time period in which to leak away. The result is a wider glitch but much reduced in amplitude. This technique is used quite effectively in some of the audio switch products, such as the SSM -2402/ SSM -2412, where the turn on time is designed to be of the order of 10 ms .

A nother point worth mentioning is that the charge injection performance is directly related to theon-resistance of the switch. In general the lower the R_{ON}, the poorer the charge injection performance. T he reason for this is purely due to the associated geometry, because $R_{\text {ON }}$ is decreased by increasing the area of the NMOS and PMOS devices, thus increasing $C_{G D N}$ and $C_{G D P}$. So trading off $R_{\text {ON }}$ for reduced charge injection may also be an option in many applications.
Q. H ow can I evaluate the charge injection performance of an analog switch or multiplexer?
A. The most efficient way to evaluate a switch's charge injection performance is to use a setup similar to the one shown below. By turning the switch on and off at a relatively high frequency ($>10 \mathrm{kHz}$) and observing the switch output on an oscilloscope (using a high impedance probe), a trace similar to that shown in Figure 11 will be observed. The amount of charge injected into the load is given by $\Delta \mathrm{V}_{\text {OUT }} \times \mathrm{C}_{\mathrm{L}}$. Where $\Delta \mathrm{V}_{\text {OUT }}$ is the output pulse amplitude.

Figure 14. Evaluating the charge injection performance of an analog Switch or Multiplexer.

MORE AUTHORS [Continued from page 2]
Aengus Murray (page 3), of ADI'sTransportation \& Industrial Products Division, in Wilmington, MA, leads the M otion-C ontrol Group's Systems Engineering team. He has a BE (Elec.) and a Ph.D. degree from U niversity College, Dublin, with a specialism in ac motor control. He continued his work on brushless systems at
 K ollmorgen, I reland, L td., later became a Senior Lecturer and Director of the Power Electronics Research Laboratory at Dublin City University. In his spare time, he enjoys skiing and sailing.

Mary McCarthy (page 20) is an Applications Engineer in the General-PurposeC onverter group, in Limerick, Ireland, working on ADCs and devices for DDS and communications. She helps customers resolve circuit and design problems, generates data sheets, develops evaluation boards, and aids in new-product
 development. M ary has a BE from U niversity College, Cork, Ireland (1991). In her spare time, she enjoys horseback riding and films.

Anthony Collins (page 20) is an Applications Engineer with ADI's G eneral Purpose C onverter group, Limerick, Ireland. He provides technical support worldwide for 12/14-bit ADCs, power metering devices, and analog switches \& multiplexers. He helps define new products and generates new-product documentation. He has an H ons Dip. EE from D ublin Institute of Technology and a BSc (Eng.) from Trinity College Dublin. H is current interests are road biking and passable guitar playing.

Jim Surber (page 3), a Strategic M arketing Engineer in ADI's High-Speed C onverter Group, is located in Greensboro, NC. His photo and brief biography appeared in Analog Dialogue 30-3.

Dave Robertson (page 8) is a Design Engineer in the Analog D evices H igh-Speed C onverter group in Wilmington, M A. H is photo and a brief biography appeared in A nalog D ialogue 30-3.

Noam Levine(page 12) is a Product M anager in AD I's C omputer Products Division, in N orwood, MA. His photo and a brief biography appeared in A nalog Dialogue 31-1.

David Skolnick(page 12) is aTechnical Writer in AD I's C omputer Products Division, in Norwood, MA. His photo and a brief biography appeared in A nalog Dialogue 31-1.

NEW PATENTS [not available from A nalog D evices]
5,613,611 to Brian Johnson, Robert M alone, M. William M iller, and Jeffrey M oeller for Carrier for integrated-circuit package $\cdots 5,623,621$ to D ouglas G arde for Apparatus for generating target addresses within a circular buffer including a register for storing position and size of the circular buffer $\cdots 5,625,359$ to James Wilson, Ronald Cellini, and James Sobol for Variable sample rate ADC ••5,627,401 to K evin Yallup for Bipolar transistor operating method with base charge controlled by back gate bias $\cdots 5,627,537$ to Philip Quinlan and K enneth Deevy for Differential string DAC with improved integral nonlinearity performance • • 5,627,715 to A. Paul Brokaw for Circuit construction for protective biasing $\cdots 5,627,867$ to David Thomson for Watchdog circuit employing minimum and maximum interval detectors... 5,629,652 to Frederick Weiss for Band-switchable, low-noise voltage controlled oscillator (VCO) for use with low-Q resonator elements . . . 5,631,598 to Evaldo M iranda, Todd Brooks, and A. Paul Brokaw for Frequency compensation for a low drop-out regulator l • 5,631,968 to Douglas Frey and Patrick Copley for Signal conditioning circuit for compressing audio signals $\cdots 5,633,636$ to H ooman Reyhani for HalfGray digital encoding method and circuitry $\cdots 5,634,076$ to D ouglas G arde and M ark Valley for DMA controller responsive to transition of a request signal between first state and second state and maintaining of second state for controlling data transfer •• 5,635,640 to John G een for Micromachined device with rotationally vibrated mass $\cdots \cdot 5,635,810$ to Rakesh G oel for Control system for a permanent magnet synchronous motor • • 5,637,901 to David Beigel, Edward Wolfe, and William K rieger for Integrated circuit with diode-connected transistor for reducing ESD damage • • $5,637,993$ to D avid Whitney and M oshe G erstenhaber for Error compensated current mirror $\cdots 5,638,010$ to Robert A dams for Digitally controlled oscillator for a phase-locked loop providing a residuesignal for use in continuously variable interpolation and decimation filters - - 5,639,542 to Roger Howe, Richard Payne, and Stephen Bart for Subground plane for micromachined device •• •5,640,039 to K evin Chau, Roger H owe, Richard Payne, Yang Zhao, T heresa C ore, and Steven Sherman for Conductive plane beneath suspended microstructure • $\operatorname{~5,644,312}$ to K enneth Deevy and Philip Quinlan for ROM encoder circuit for flash ADCs with transistor sizing to prevent sparkle errors $\cdot \operatorname{C5} 546,968$ to Janos K ovacs, Ronald K roesen, and K evin McC all for Dynamic phase selector phase locked loop circuit \cdots • 5,648,735 to Derek Bowers and James Ashe for Comparator with a predetermined state in dropout • . . 5, 656,952 to K evin M CC all and David Reynolds for All-MOS differential high speed output driver for providing positive-ECL levels into a variable load impedance $\cdots 5,659,262$ to John M emishian for Offset trimming for a micromachined sensing device $\cdots \cdot 5,661,422$ to Thomas Tice, D avid Crook, K evin K attman, and Charles Lane for High speed saturation prevention for saturable circuit elements $\cdot \cdots 5,666,043$ to Peter H enry and Evaldo M iranda for Voltage detector with trigger based on output load currency • • $5,666,299$ to Robert A dams, Tom K wan, and M ichael Coln for Asynchronous digital sample rate converter . . . $5,668,551$ to Patrick J. G aravan and Eamon Byrne for Power-up calibration of charge redistribution analog-to-digital converter $\cdots 5,668,553$ to James A she for R2R digital to analog converter with common shutdown mode • • 5,670,821 to Derek Bowers for Guard ring for mitigation of parasitic transistors in junction isolated integrated circuits ... 5,670,883 to Geoff O'D onoghue and Scott M unroe for Integrated circuit interlevel conductor defect characterization test structure and system $\cdots 5,671,252$ to Janos K ovacs and Scott M unroe for Sampled data read channel utilizing charge-coupled devices •• 5,672,952 to Thomas Szepesi for Controller for battery charger with reduced reverse leakage current •• 5,673,047 to Carl M oreland for Gain-compensating differential referencecircuit $\cdots \cdot 5,675,276$ to Rakesh G oel for Gatedriver circuit and hysteresis circuit therefor •• 5,675,334 to Damien M cCartney for Analog to digital conversion system • • 5,677,558 to Gerard M cG linchey for Low dropout linear regulator \cdots - 5,679,436 to Yang Zhao for Micromechanical structure with textured surface and method for making same $\cdots 5,680,300$ to Thomas Szepesi and M artin M allinson for Regulated charge pump dc/dc converter.
 Mexico: Canadien (8) 3652020 Netherlands: Acal Nederland 040-2502602, EURODIS
TEXIM Electronics bv 053-5733333, SPOERLE ELECTRONIC 040230 9999, 0306091234 New Zealand: Memec EBV (NZ) Ltd. (9) 6365984 Norway: BIT ELEKTRONIKK 66981370 People's Republic of China: Arrow Electronics:

Beijing (10) 62628296; Chao Yang Dist. (Beijing) (10) 64671779; Fuzhou (591) 784 8456; Hong Kong (2) 2484
 Excelpoint Systems (PTE) Ltd:

Beijing (10) 68373894; Shanghai (21) 64822280;
Shenzhen (755) 3249492
Shanwei Excelpoint Entp. Co.:
Shanwei Excelpoint Entp. Co.:
Shanghai (21) 64822280
Poland: P.E.P. ALFINE (61) 213375 Romania: TOP 9+(401) 2109124 Romania: TOP 9+(401) 2109124
Russia: AO AUTEX (7095) 3349151, ARGUSSOFT Co.
(7095) 2883602
Singapore: Excelpoint Systems PTE Ltd. 741-8966
 (7) 5724173

Slovenia: ALMA-ELECTRONIC (1) 1598510, SEI/E/batex (1) 1597198 South Africa: Analog Data Products CC (11) 805-6507 Spain: SEI/SELCO (91) 6371011

Sweden: IE KOM PONENTER AB 8-804685, J akob
Hatteland Electronic AB 84457500
Sweden: IE KOM PONENTER AB 8-804685, J akob
Hatteland Electronic AB 84457500 Switzerland: SASCO SEMICONDUCTOR 0187462 80, 021-8032550; SEI/EIbatex 056/437 5111;
SPOERLE ELECTRONIC Distribution Intern

SPOERLE ELECTRONIC Distribution International GmbH 01/874 62 62, 024-470100

Taiwan: Andev Technology Co., Ltd. (02) 763-0910, Chieftron Enterprise Co., Ltd. (02) 722 3570, Golden Way Electronic Corp. (02) 6981868

Turkey: ELEKTRO Electronics (216) 4610790
United Kingdom: Arrow-J ermyn Electronics 01234 270027, Avnet-Access 01462 480888, Phoenix Electro Limited 01555 751566, Abacus Polar 01525858000 SEI/Millenium Electronic Components 01203694 555, Kudos Thame 01189351010

INTERNATIONAL DISTRIBUTORS Argentina: Semak Sociedad Anonima (54 1) 3812108 Australia: BBS Electronics Australia, Pty. Ltd., (2) 9894 5244; Insight Electronics Pty. Ltd. (3) 9761 3455; Lockhart Pty. Ltd. (8) 9244 3211; Trio Electrix Pty. Ltd. (8) 82340504 Austria: SEI/Elbatex (1) 86642-0, SPOERLE ELECTRONIC (1) 360 46-0

Baltics and Estonia: Adimir Ltd. (2) 526402 Belgium: ACAL NV/SA 02-720 59 83, EURODIS TEXIM Electronics 02-2474969, SPOERLE ELECTRONIC 02725 4660

Brazil: Bridge International (11) 5589 1689; Condigy Components Electronicos Ltda. (11) 716 2217; Alphatech Services E Com. Ext (55 11) 2903433
Bulgaria: K1 ELECTRONICS (92) 519 793, SEI/Elbatex (92) 9625739
 386/1/1597198
 (2) 4763707

Denmark: J akob Hatteland Electronic A/S 70102211 Finland: Oxxo Oy 9-5842 600

France: AVNET EMG (01) 49-65-25-00, CCI Electronique (01) 41-80-70-00, Dimacel Composants (01) 34-23-70-00, SEI/Scaib (01)-69-19-89-00

Germany: SASCO SEMICONDUCTOR 089/46 11-0, SEI J ermyn 06431/508-0, REIN Components GmbH 02153 733-112, Semitron 07742/80 01-0, SPOERLE ELECTRONIC 06103/30 4-0

Greece: MICRELEC (1) 5395042 , 2685 ; Hong Kong: Arrow Electronics Asia Pacific (2) 2484 2685, Glorytack (HK) Ltd. (2) 2765 0188; Chinatronics Tech, Ltd. (2) 23020702 Hungary: SEI/Elbatex (1) 26990 93, SMD Technology KFT (1) 3707994

India: Analog Sales Pvt. Ltd. (91) 11-623-0565; Capricorn Systems (s) Pte. Ltd. (65) 8420966 Systems (s) Pte. Ltd. (65) 8420966
Ireland: Arrow Electronics 14595540 Ireland: Arrow Electronics 14595540 , Avnet LyCO
1 8901000, Abacus Polar 050523005
Italy: AVNET EM G srl (2) 381901, Hellis S.A.S. (536) Italy: AVNET EMG srl (2) 381901, Hellis S.A.S. (536)
804104, La Tecnika Due (11) 2425905, Special-Ind (2) 66805177, (6) 5917337, Tecnika Due (438) 555447, Lasi Elettronica 02661431

Korea: Analog World Co., Ltd. (2) 701 5993, Tong Baek Electronics Co., Ltd. (2) 715 6623, Lite-On Korea Ltd. (2) 6509700
INTERNATIONAL DIRECT SALES OFFICES Australia: (59) 867755 Austria: (1) 88855 04-0 Brazil: (11) 51822767
Denmark: 42845800
Gemany: 089/76 903-0, 0221/68 929-0, 0711/139 908-0 Hong Kong: (2) 506-9336 India: (91) 11-623-0565 Israel: (9) 7744461 Italy: (2) 66500120 J apan: (3) 5402-8210 No. (2) 55433015233200 Singapore: 375-8200 Sweden: (8) 282740 United Kingdom: 01932266 000, *0118 9788235 (Firefly Technology Ltd-Mil/Aero Representative) *Representative

EUROPE HEADQUARTERS

AM Westpark 1-3, D-81373 München, Germany 9/76 903-551, Fax.
JAPAN HEADQUARTERS
New Pier Takeshiba, South Tower Building
1-16-1 Kaigan
Minato-ku, Tokyo 105, J apan
Tel: (3) 5402-8210; Fax: (3) 5402-1063
SOUTHEAST ASIA HEADQUARTERS
2102 Nat West Tower, Times Square
One M atheson Street
Causeway Bay, Hong Kong
Tel: (2) 506-9336; Fax: (2) 506
Tel: (2) 506-9336; Fax: (2) $506-4755$
WORLDWIDE HEADQUARTERS
One Technology Way, P.O. Box 9106
Norwood, MA 02062-9106, U.S.A.
Tel: (781) 329-4700, (1-800) 262-5643 (U.S.A. only) Fax: (781) 326-8703
CUSTOMER ASSISTANCE (U.S.A.)
Help Line (800) 262-5643
Literature Center (781) 461-339
Central Applications (781) 937-1428
World Wide Web Site: http://www.analog.com
Analog Dialogue, Volume 31, No. 3, 1997
Malaysia: Excelpoint Systems (PTE) Ltd. 03-2448929 Mexico: Canadien (8) 3652020 Netherlands: Acal Nederland 040-2502602, EURODIS
TEXIM Electronics bv 053-5733333, SPOERLE ELECTRONIC 040230 9999, 0306091234 New Zealand: Memec EBV (NZ) Ltd. (9) 6365984 Norway: BIT ELEKTRONIKK 66981370 People's Republic of China: Arrow Electronics:
Beijing (10) 62628296; Chao Yang Dist. (Beijing) (10) 64671779; Fuzhou (591) 784 8456; Hong Kong (2) 2484 2113; Shanghai (21) 62493041; Shenzhen (755) 2297966 Excelpoint Systems (PTE) Ltd:
Beijing (10) 68373894; Shanghai (21) 64822280; Shenzhen (755) 3249492
Shanwei Excelpoint Entp. Co.:
Shanghai (21) 64822280
Poland: P.E.P. ALFINE (61) 213 375, SEI/EIbatex (2) 6217122 Portugal: SEI/SELCO (2) 9738203 Romania: TOP 9+(401) 2109124 Russia: AO AUTEX (7095) 3349151, ARGUSSOFT Co. (7095) 2883602
 Slovakia: DIALOGUE s.r.o. (838) 722 030, SEIEIbatex
(7) 5724173 Slovenia: ALMA-ELECTRONIC (1) 1598510, SEI/EIbatex (1) 1597198 A South Africa: Analog Data Products CC (11) 805-6507
Spain: SEISELCO (91) 6371011 Sweden: IE KOMPONENTER AB 8-804685, J akob Hatteland Electronic AB 84457500
Switzerland: SASCO SEMICONDUCTOR 0187462 80, 021-8032550; SEI/Elbatex 056/437 5111;
SPOERLE ELECTRONIC Distribution International GmbH 01/874 62 62, 024-470100 Taiwan: AndeV Technology Co., Ltd. (02) 763-0910, Chieftron Enterprise Co., Ltd. (02) 722 3570, Golden Way Electronic Corp. (02) 6981868 (210) 4610790 Turkey: ELEKTRO Electronics (216) 4610790 United Kingdom: Arrow-J ermyn Electronics 01234 Limited 01555751566 , Abacus Polar 01525858000 SEI/Millenium Electronic Components 01203694 555, Kudos Thame 01189351010
 5244; Insight Electronics Pty. Ltd. (3) 9761 3455; Lockhart Pty. Ltd. (8) 9244 3211; Trio Electrix Pty. Ltd. (8) 82340504 Austria: SEIEIbatex (1) 86642-0, SPOERLE ELECTRONIC (1) 360 46-0

Baltics and Estonia: Adimir Ltd. (2) 526402
Belgium: ACAL NV/SA 02-720 59 83, EURODIS TEXIM
Electronics 02-2474969, SPOERLE ELECTRONIC 02725 4660

Brazil: Bridge International (11) 5589 1689; Condigy Components Electronicos Ltda. (11) 716 2217; Alphatech

Bulgaria: K1 ELECTRONICS (92) 519 793, SEI/EIbatex (92) 9625739 Kl

Croatia: ALMA-ELECTRONIC 385/1/325509, SEI/Elbatex 386/1/1597198
Czechia: AMTEK SPOL s.r.o. (5) 43216066, SEI/EIbatex (2) 4763707
Denmark: Jakob Hatteland Electronic A/S 70102211
Finland: Oxxo Oy 9-5842 600 Finland: Oxxo Oy 9-5842 600

France: AVNET EMG (01) 49-65-25-00, CCI Electronique (01) 41-80-70-00, Dimacel Composants (01) 34-23-70-00, SEI/Scaib (01)-69-19-89-00

Germany: SASCO SEMICONDUCTOR 089/46 11-0,
 733-112, Semitron 07742/80 01-0, SPOERLE ELECTRONIC 06103/30 4-0

Greece: MICRELEC (1) 5395042 _ Pacific (2) 24842685 : Hong Kong: Arrow Electronics Asia Paciific (2) 2484 2685;
General Engineers Hong Kong (2) 503 2212; Texny Glorytack (HK) Ltd. (2) 2765 0188; Chinatronics Tech, Ltd. (2) 23020702 Hungary: SEI/Elbatex (1) 26990 93, SMD Technology KFT (1) 3707994

India: Analog Sales Pvt. Ltd. (91) 11-623-0565; Capricorn Systems (s) Pte. Ltd. (65) 8420966 ireland: Arrow Electronics 14595540, 1 8901000, Abacus Polar 050523005 Italy: AVNET EMG srl (2) 381901, Hellis S.A.S. (536) 804104, La Tecnika Due (11) 2425905, Special-Ind (2) Elettronica 02661431
 Electronics Co., Ltd. (2) 715 6623, Lite-On Korea Ltd. (2) 6509700

EUROPE HEADQUARTERS
AM Westpark 1-3, D-81373 München, Germany
Tel: 089/76 903-551; Fax: 089/76 903-557
JAPAN HEADQUARTERS
New Pier Takeshiba, South Tower Building
1-16-1 Kaigan
Minato-ku, Tokyo 105, J apan
Tel: (3) 5402-8210; Fax: (3) 5402-1063
SOUTHEAST ASIA HEADQUARTERS
2102 Nat West Tower, Times Square
One Matheson Street
Causeway Bay, Hong Kong
Tel: (2) 506-9336; Fax: (2) 506
WORLDWIDE HEADQUARTERS
One Technology Way, P.O. Box 9106
Norwood, MA 02062-9106, U.S.A.
Fux: (78) 3268703
CUSTOMER ASSISTANCE (U.S.A.)
Help Line (800) 262-5643
Literature Center (781) 461-3392-1428
Central Applications (781) 937-1428 World Wide Web Site: http://www.analog

Analog Dialogue, Volume 31, No. 3, 1997

HOW TO GET HELP FROM ANALOG DEVICES
Customer assistance help line (U.S.A. and Canada): 1-800-262-5643 (1-800-ANALOG-D)
Literature Support: Phone: 1-800-262-5643 press 2$\}$ \{ Data sheets, books, application notes, Fax: 1-508-626-0547 \} catalogs, subscriptions
AnalogFax ${ }^{\text {m }}$: Phone: $1-800-446-6212 \quad$ Data sheets by automated fax (U.S.A. and Canada)
World Wide Web Site: http://www.analog.com
If your subject is:
Analog and mixed-signal ICs, etc.
$\begin{array}{ll}\text { Technical help } & \text { Prices \& orders } \\ \text { (781) 937-1428 } & \text { Local distributor } \\ \text { (781) 461-3672 } & \text { Local distributor }\end{array}$ $\begin{array}{ll}\text { (781) 461-3672 } & \text { Local distributor } \\ \text { (781) 461-4111 } & 1-800-426-2564\end{array}$
1-800-426-2564
NORTH AMERICAN DISTRIBUTORS
Allied Electronics (800) 433-5700 Bell Industries (800) 525-6666 Chip Supply (407) 298-7100 Future Electronics (800) 388-8731 Hamilton Hallmark (800) 332-8638 $\begin{array}{ll}\text { Newark Electronics } & \text { (800) } \\ \text { Pioneer } & \text { 4053-91-0168 }\end{array}$ $\begin{array}{ll}\text { Semi Dice } & \text { (714) 952-2216 } \\ \text { Wyle } & \text { (800) 414-4144 }\end{array}$ U.S.A. FACTORY DIRECT SALES OFFICES California (714) 641-9391 (South) $\begin{array}{ll}\text { Florida } & \text { (407) 660-8444 } \\ \text { Georgia } & \text { (770) 497-4440 }\end{array}$
$\begin{array}{ll}\text { Maryland } & \text { (215) 643-7790 } \\ \text { Massachusetts } & \text { (781) 461-3000 } \\ \text { PennysIvania } & \text { (215) 643-7790 (} \\ \text { (412) 746-5020 (} \\ \text { Texas } & \text { (972) 231-5094 } \\ \text { Washington State } & \text { (425) 822-1655 }\end{array}$

Signal-conditioning modules
PC data acquisition cards
(781) 461-4111
(781) 937-1428 (781) 937-1428 Local distributor
(781) 937-1428 Analog and mixed-signal ICs, etc.
Digital signal processing
Samples $\begin{array}{ll}\text { Florida } & \text { (407) 660-8444 } \\ \text { Georgia } & \text { (770) 497-4440 } \\ \text { Illinois } & \text { (847) 519-1777 }\end{array}$

$\begin{array}{ll}\text { Maryland } & \text { (215) 643-7790 } \\ \text { Massachusetts } & \text { (781) 461-3000 } \\ \text { Pennyslvania } & \text { (215) 643-7790 (East) } \\ & \text { (412) 746-5020 (West) } \\ \text { Texas } & \text { (972) 231-5094 } \\ \text { Washington State } & \text { (425) 822-1655 }\end{array}$

WORLDWIDE HEADQUARTERS
One Technology Way, P.O. Box 9106
Norwood, MA 02062-9106, U.S.A.
Tel: (781) 329-4700, (1-800) 262-5643 (U.S.A. only); Fax: (781) 326-8703 World Wide Web Site: http://www.analog.com
Analog Dialogue, Volume 31, No. 3, 1997

[^0]: *F or technical data, consult our Web site, www.analog.com, use Faxback to request 2169/2203 (see page 24), or use the reply card: circle 1

[^1]: *Powl Rtrain is a trademark of International Rectifier Corp.

[^2]: All brand or product names mentioned are trademarks or registered trademarks of their respective holders.
 *F or immediate data, visit our WorldWideWeb site: http://wwwanalog.com. In N orth America, call ADI's 24-hour AnalogF ax ${ }^{\text {Tm }}$ line, $\mathbf{1}$ (800) 446-212and use Faxcode.

[^3]: All brand or product names mentioned are trademarks or registered trademarks of their respective holders.
 *F or immediate data, visit our WorldWideWeb site: http://www.analog.com. In N orth America, call ADI's 24-hour AnalogFax ${ }^{\text {Tm }}$ line, 1(800) 446-222 and use Faxcode.

[^4]: All brand or product names mentioned are trademarks or registered trademarks of their respective holders.
 *F or immediate data, visit our WorldWideWeb site: http://www.analog.com. In N orth America, call ADI's 24 -hour AnalogF ax ${ }^{\text {Tm }}$ line, $\mathbf{1}$ (800) 446-212 and use Faxcode.

[^5]: All brand or product names mentioned are trademarks or registered trademarks of their respective holders.
 *F or immediate data, visit our WorldWideWeb site: $\boldsymbol{h t t p}: / / \mathbf{w w w}$. analog.com. In N orth America, call ADI's 24 -hour AnalogF ax ${ }^{\text {Tm }}$ line, $\mathbf{1}$ (800) 446-212 and use Faxcode.

